AFIT/GCE/ENG/92D-12

AN INTELLIGENT REAL-TIME SYSTEM
ARCHITECTURE IMPLEMENTED IN ADA

THESIS | DTIC ‘

. ELECTE
Mlchgpﬁ%lgﬁhdm s JANO 8 1993 D
AFIT/GCE/ENG/92D-12 E

93-00145

Approved for public release; distribution unlimited

93 1 4 127

AFIT/GCE/ENG/M2D-12

AN INTELLIGENT REAL-TIME

SYSTEM ARCHITECTURE IMPLEMENTED IN ADA

THESIS

b1y,

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Computer Engineering

Michael Anthony Whelan, A.AS.,BSEE.

Captain, USAF

December, 1992

Approved for public release; distribution unlimited

WSPEC% ‘

Accesion For

NTIS CRA&I

DTiIC TAB
Unannounced 0
Justification

By

Dist:ibution |

Availability Codes

A-/

) Avail and/or
Dist Special

Preface

The research conducted here was motivated by my experiences as a project engineer for the Pilot’s
Associate program. During the development phases of the program, most of the effort focused on
developing the knowledge bases necessary to build a Pilot’s Associate with little attention paid to the
environment in which such a system would eventally be deployed. Idecided to address the issues of real-
time and Ada in this thesis to help smooth future efforts to transition “intelligent systems” into real-time

environments. I believe the experience and knowledge gained while I pursued that goal to be invaluable.

I am indebted to a number of faculty at AFIT for the knowledge I gained while attending there. First
is my thesis advisor, Major Gregg Gunsch, who tanght me the meaning of the word “scope”. He also
provided valuable feedback that allowed this document to at least be readable. Second is Dr. Gary Lamont
whose algorithms class taught me more about “computer science” than all other computer classes
combined. Major Eric Christensen assisted me in solving some tricky Ada problems I had given up on as
un-solvable. In addition, all my fcllow students provided the valuable moral support that allowed me to

continue “pressing on”.

My most heart felt thanks is reserved for my family. First for my wife, Mary, who ran the household
without me and suffered through quite a few “do nothing” weekends. Second are my children, Shaun and
Shaunna, who now have a daddy back. Without their understanding and love, I could never have
completed this research.

Michael Anthony Whelan

Table of Contents

Page
PIEEACE c.oovvenvenreeeereereceereetresestess s esas s as st e ssesssaesmtesesmess osasensssse senas b sssssssabsesssasasssavensss sussnsnes ii
TADIE Of COMLEDLScvevereniereeienearerencneesesresessssosesessssessenesemsssassnsesaresanertorerencessntas sasasensassasssse iii
LSt Of FAGUIES ... et ceec e stes et essrs e s s e s e ses s senssssss s sessassssses osaronasnen srmes vii
LiSt Of TADIEScociancirnanrnrrccecnensnansnssnesssasesssssasns sesensassesiasssnssssesssassssesesssssnssssens X
ADSITACE «....eveeeceierecenenceneccecetesenresssessssseessasesesssinsesesbnsssmssss sassssssssnssssorsassessssesssossssnssnsssssnssn xi
I. Introduction...................... eeberereser e sreae e asraneanseras eeeeneveranesarenes 1-1
1.1. Background.... eeenretetesteteastesesetststc er s et e s en et sasabn e tetareenenerrarenennesrseeee 1-1
1.2. Problem Statement................ . reretereteasstetear s sae e e sasesesanssea nesesennsenes 1-3
1.3, ASSUIMPLONScovoueeurrererenrarenrsaennnesssesesssrssessesssssessmstssesesssssessonensssossssrssassasssons 14
L. SCOPE.....oeeeeeceeeeterecerenteesesae e e ssasrsnt et soses e seneasnressssssssasessaasassesesostenssensassesensonsrenes 14
1.5, APPIOACH. ...ttt s e ssecacntesseneene s sressresesersoneseenssas s sensanssans 14
1.6. Summary........c.cceovereeeeenrrerercesecennas rereesenenrasneans eeeeeeerensareseneaanes 1-5
1.7. TRESIS OVEIVIEWooierereeereesereseerensicntsnsennessesseseseesesensssesenseaenasenssasassessanassenes 1-6
I BaCKEIOUNA..........ccoooiimieereeereecer et neccenssessane s sasstsmsstsesmsms e sosensanas sesrsssstsus s sesessenssnenesssenes 2-1
2.1. Traditional Real-Time Systemscccoerurererunene. 2-1
2.2. Scheduling Imprecise COMPULALIONSc.c.ovieevcecnearrrnrerosnresessiesisiecsnseacsesscssssesee 2-4
2.3. Intelligent Real-Time Systems..........ccoooeccveremrnnees 2-7
2.3.1. Pilot's Associate PrOIAIcccoceceuemurrenierecosreensinmsascsssenessesosnrenns 2-7
2.3.2. Lockheed's Pilot's ASSOCIALEc.eccererererrrerereeereercreaeesensenasssesesenns 2-8
2.3.3. McDonnell Aircraft's Pilot's Associate............cccoeeeerreenvrrvcerennreenenns 2-10
2.3.4. Adaptive Suspension VehiCle............coooceeurrenrmrerererenrensereessnenraneenns 2-14
2.4. Common Intelligent Real-Time System Componentsc...cocoveeeermmiecececnren 2-18
2.5. Schedulable Task TYPEScoueeiveecrereorennmreesnsesissesenssssecesaeosasssesnsasssssssansesass 2-19
2.6, SUIMATYcccocerereecrirerenteirinenrssrsesesssssssoseststessssrsasssessessosassssasasstossssssssunsase senn 2-20

iii

II. Design Approaches, Assumptions, and Key Decisionsc.coceveveeeeeineeecccnrenerencree 3-1

3.1. Performance MEASUIEScccveeerrirnermescacssnassorassssnssssesssessssesessessassarannsssssnesscs 3-1
3.2, Design ConSIdErationscoceceeesrnrenterneessmssesessressssasesssnsssssssssssersosessssansrens 3-2
3.3. Design Assumptions eeeereseeeenseneanen eereeeresrarnens 33
3.4. Possible Design APPIOaches..........ccvueeiervervenieneeinteecsrcrsesnssneressesarssnssssessssssrevees 3-5
3.4.1. Modifying CLIPS/Ada Design Approachccccoevsvvrnmreererenennnnes 35
3.4.2. Controllable Real-Time Task Manager Approacho.c.cocereerunneee 3-8
3.5. Design Problem Stalement...........cocveererneerrcensrmcrsemsnnsressesesssssessssssansssssassassasssess 39
3.6. Key Design DECISIONSccceueverirerteereneseresneessasesssenssrscsssossasssesssssesssssssssasssseos 39
3.7. Design Approach Summary ereeresesseresresetesnrater e sna e seearasesesnesase s asneser e entan 3-10
IV. An Intelligent Real-Time System ArchiteCIUTeoouevveueeuiercenrrasrnerersrvessenssersessessens 4-1
4.1, TOPLEVEI DESIZIL.......ooeeeereieeenreicennenniesesressaessesresseseseenensessseneasassesassasssessanss 4-1
4.2. Environment MOGE]cooomeireecnentrnnnreeiserarsienssesssesssesssessssasarsssssssssasessess 42
4.3, SyStem MOAEL..........ooeeeeeeeteeeeceerteeeree e seeenessese s e e sassssanensess s s s see s esnsesvasnes 4-3
4.4, JJO PIOCESSoocuireieceieiecieee st crcrnenassnsssesestesssassnsessacs e stsmsnesasassssssssraassnarees 44
4.5. Reasoning Process .. eereseeesesteterestee s taetean et as et et essense et bntnean saeeseeneeresrsenssanaes 44
4.6. TaSk MANAGET.........ccoceeiicecerceienrermcrsasssssnasatess s sssesasacssnsas ssnstsssssessssnssssnansasens 4-5
4.6.1. Periodic Task Schedulingccouveeeeerceiecernrneesereneaeseneseseeeas 4-6
4.6.2. Non-Periodic Task Scheduling..................c.c.ccoeerunn.... 4-10
4.7. Architecture SUMMATYc.ccocverierareueerressssiesssseseneseesssssssesssssssasessssnns 4-13
V. Feasibility Demonstration SYSIEIooeeoeeeeeeerieseieeeireneenesseseessssesssssnscesessessssonsesses 5-1
5.1. General Implementation ISSUES............cccovrveieeemereereriereereessersecsnesesssssssesneneoss 5-1
5.1.1. Ada Compiler ChOICEcccvveerereenreesaeeenrseeresrseessseesssesssnaseneeresenns 5-2
5.1.2. Memory Management Issues and Impactsccooovremeeeerenieeeeennnne. 5-2
5.1.3. Dynamic Task Creation and Control..............cccooerrrveerereeecrecrrrenenens 5-3
5.1.4. Top Level Priority ASSIgNMERLS.............c.coecerveeereerreenecerersserereenesenns 5-6
5.2. System and Environment Model ... esessenne 5-8
5.3, J/O PIOCESS ...cceeueereecnemrnrsesesssrennsansessssesesssssssssesssssesessesssnsssssesssssssassssassssasasasssses 5-8
5.4. Reasoning Process Implementation etereeererenensnaneanes ..5-8
5.5. Task Manager Implementation Details.................cccceooevereveveemireeeeeeeererceeeee 5-11
5.5.1. Task Manager Data StRUCITEScccovemevruemreirerieneeneeeceeesnesenes 5-11
5.5.2. Task States and State TranSitionsccceveeerevererriceererenessseeecens 5-13
5.5.2.1. Periodic Task State Transitions...........cocceoerereerrerereremseenene 5-14
5.5.2.2. Non-Periodic Task State Transitionsoceceererenne 5-15
5.5.3. Periodic Task Priority Assignmentscccecoecerereronrrerereeneerenesns 5-18
5.5.4. Task Manager Entry Call Descriptionsc.ccceeveeeeereeeeeecenreensuens 5-18
5.54.1. Add_Task Entry Callcccccoecevemrrenncensrncrnnrecssesnions 5-19

iv

5.5.4.2. Modify_Task Entry Callccocecveimimommincincrcnccane 5-20

5.54.3. Remove_Task Entry Callcooeveeenireocecere e 5-23

5.5.4.4. Change_Periodic_Utilization Entry Call 5-24

5.54.5. Task_Complete Entry Call..............coccuroemreeeernrrreeennnne 5-24

5.54.6. Task Dispatcher..............oceceriveeereieretrenrecrieceeeeneanes 5-25

5.6. Implementation SUMMATYcocotveeiierermreernrenerereessnssassesseresssssssesssssesssesssens 5-26
VL Results and ANALYSISc.c.ocveeeieeeemeeeceriessrteneseesnssressseseseseseassessassessssssssesonsaesessssssesssessaeed 6-1
6.1. Architecture Feasibility eereteeteteaoestaan et saeneeneaen et sentareanartraranes 6-1
6.2. Dynamic Task Creation and COntIolcooieeeueeeceierrrreeeeeeiesevreeersenerenend 6-3
6.2.1. Dynamic Task Creation Results £-5
6.3. Task Scheduling Evaluationcccocoeeeeivevecevinnenecereneeeseene e eeseecesessenenssnses 6-5
6.4. Code Complexity ANALYSIScoeeveeerereeerciceereicseiesssanssaenesasnessaesassesnsssssensaes 6-7

6.5. Resulls SUMMATYooccocreceincrennssseserssnsessseosesssesns ...6-10
VIL CONCIISIONcucvverrrnencresssiraasmtsassssssrsssesessnsssssssssssssssssesssenssessssssesesssasssessrssessssnsaensssees 7-1
7.1. Summary............... tereresreraser e sesnsssssens snsanes 7-1
7.2. RecomMmMENdations.........c.cceceveeeseorereresereaesssarsnssenessnaans . 72
7.2.1. Task Manager Recommendationsc..cooverrevesnereneeeeeereseecenns 7-3
7.2.2. Other Architecture Components Recommendations.......................... 7-3
7.2.3. Implementation and Development Recommendations....................... 7-5
7.3. ThEsiS SUIMINATYcvueireerreirnnnreresssesesesssesesesssssssseseserensssassssesssessssasssssnsesns 7-5
ApPENdiX A. TESERESUMSoeieeeeeecceseeeteintnarin e sear e tesens e s e setasssssssese s sesasesssesenesensnsnsanes A-1
A.1. Scheduling Overhead Timing Results...........ccocovvevererreeevermereeceeeeeee e eaenene A-1

A2. Schedules PROQUCEAuiveeeeereeecnrnntnereesress e sesesesssassnseseseassemssn e sesssesses A-10
Appendix B. Periodic Priority Assignment Methods Investigatedocooeveeecereveineeescnnnne B-1
B.1. Periodic Priority Assignment Problem and Potential Solution Methods........... B-1
B.1.1. Periodic Prioritics Normal Distribution Method B-2
B.1.2. Periodic Priorities Lincar Methodcooevveeeeneceieeeeeeeeeneee B-3
B.1.3. Periodic Priorities Static Methodccccccoverrveeenererrvenenrerencennne B4
B.2. Evaluation of Priority Assignment Methods eerressrtrarr s baras st ansat et narensaans B-5
Appendix C. IRTS Demonstration System User’s GUIdeoo.oeueerereereesereserermcseenenneseeens C-1
C.1 System Requirements and Compilation Order............................ C-1
C.2 SOUTCE COMEcoeinirrrrrrrrteessesesesste s sessessssnssssssesssessssensasassssessssnsasssnsosans C4

.......

vi

List of Figures

Figure Page
Figure 2.1 Overall Concept of the Pilot's ASSOCIALEcccverneeirericesincrreracnssensersressesseessonens 29
Figure 2.2. Reasoning Process Diagramcoevicimincniiecncnsecsncsssrsnssesesenesaesnsesinens 2-12
Figure 2.3 McAir's Top Level Architectrecocococemivinininisniisisisesseeenssiereccasseseasassens 2-13
Figure 2.4 McAir's Module Intemal ArChiteCtiIecvvvvvvermveinisemernnseseissrsin i 2-14
Figure 2.5 ASV Planning and Control Architecture [Payton, 1991:55]vvmeviimircoriccceenne 2-16
Figure 2.6 ASV Plan Generation [Payton, 1991:55].... eeetereeneue et sttt s s ase s pans anaatars 2-17
Figure 3.1 CLIPS Rule Definition Structure [CLIPSRefMan, 1991a:27]ccoceerievrcnenece 36
Figure 3.2 Modified CLIPS Rule Structireccceceeriecmcscrenranene eereereen st en et et esnsaneeen 37
Figure 4.1 Top Level Design Diagram . cerersesesaet st sae st st ssa s e b es b e sesesen semsaseees 4-2
Figure 4.2 Some Calculable Periodic UtlZationscoecucuccminescusceneestrcnnesenecssesenneces 49
Figure 4.3 Predicting Non-Periodic Task Actual Durations ceevenraenenrarenas 4-12
Figure 5.1 Package Structure of Tasks..........c.coveuesnicicincrcrmcmessasecscscmcscensaessessecnes .54
Figure 5.2 Normal and Importance Ordered Priority Ranges . 517
Figure 5.3 IRTS Ada Task Structure Diagramccocuciiinnriminnisccosinessrsessseseesnne 5-10
Figure 5.4 Task Control Block Ada Record Type Declaration............c...cececrevrmsmrernseeessenne 5-13
Figure 5.5 Periodic Task State Transition Diagram...............cccccocvecnniincercnneecnneorecnenecsnenns 5-15
Figure 5.6 Non-Periodic Task State Transition Diagram cerrecenereasnresaene 5-16
Figure 6.1 Example Periodic Task Manager Overhead versus Task Duration 6-2
Figure 6.2 Example Non-Periodic Task Manager Overhead versus Task Duration................. 6-2
Figure 6.3 Summary of Periodic Task Control THIESc.ccccveeererenesearenconercnecoresenearaesens 6-4
Figure 6.4 Summary of Non-Periodic Task Control TImescccovceeeeveeeereenerenremrenccarmannnns 64

vii

Figure 6.5 Example of Execution Priority INVErsion ..., 6-8

Figure A.1 Periodic Tasks Add Time, New Task Instantiatedccocoooioceminriccccnnenrecnnn, A-2
Figure A.2 Periodic Tasks Add Time, Task Shell Reused...........coomcoiinmiiirrecnccccnenenes A-3
Figure A.3 Periodic Tasks Modify Time, Period and Importance Changed.................c......... A4
Figure A4 Periodic Tasks Remove Time ..ottt sreccneereseneesecasaenenne A-5
Figure A.5 Non-Periodic Tasks Add Time, New Task Instantiatedccocoeveerencnarunnnn. A-6
Figure A.6 Non-Periodic Tasks Add Time, Task Shell Reusedcoovveieiinnnneennncee. A1
Figure A.7 Non-Periodic Tasks Modify Time, Deadline and Importance Changed................ A-8
Figure A.8 Non-Periodic Tasks Remove Timecocvimriimiencnennein s A9
Figure B.1 Example Periods of a Task Setcceeeviinivirineecntrnessimmeccneeenesessessssseressersassssens B-2
Figure B.2 Periodic Priorities Using Normal Distributionccccoeeeeiivcncncnencvesnrcrnsnenene B-3
Figure B.3 Periodic Priorities Using Linear Methodccccoerreeeoennniecenreneincsrennnnen B4
Figure B.4 Periodic Priorities Using Static Methodccooveiiieinnccennincnnnenreensnrereenees B-5
Figure B.5 Period vs. Priority, Static Method, Al Optional ..o B-8
Figurc D.6 Tasks per Priority, Static Mcthod, All Optional - - B-8
Figure B.7 Period vs. Priority, Static Method, Some Mandatoryccccooveeeneeeeneceenncne. B-9
Figure B.8 Tasks per Priority, Static Method, Some Mandatory...........ccececcveeueerernnas R9
Figure B.9 Period vs. Priority, Linear Method, All Optionalccccocnreeierverennrneerceennnee B-10
Figure B.10 Tasks per Priority, Linear Method, All Optionalccoceeveeeceeeererererererneennee B-10
Figure B.11 Period vs. Priority, Linear Method, Some Mandatorycocccoeeeenuernecnsuncnnes B-11
Figure B.12 Tasks per Priority, Linear Method, Some Mandatory...........coereeorvecerecarruennnne B-11
Figure B.13 Period vs. Priority, Normal Distribution Method, All Optional B-12
Figure B.14 Tasks per Priority, Nomal Distribution Method, All Optional B-12
Figure B.15 Period vs. Priority, Normal Distribution Method, Some Mandatory.................... B-13
Figure B.16 Tasks per Priority, Normal Distribution Method, Some Mandatory B-13
Figure B.17 Period vs. Priority, New Method, All Optionalc.ccecoveevmerrnreerererereninnns B-14

viii

Figure B.18 Tasks per Priority, New Method, All Optionalccccocenmrenrncrenencererercnnenes B-14
Figure B.19 Period vs. Priority, New Method, Some Mandatoryccco.coeeeerveneeernseecneenes B-15
Figure B.20 Tasks per Priority, New Method, Some Mandatoryccccoooorieenernvreecncercnas B-15
Figure C.1 Recommended Directory Structure for IRTS Demonstration System................... C-1

List of Tables

Table Page
Table 4.1. Example Periodic Task Setlccouinoreieeeecereie e cetsesesenesesnressesesernsassess 4-7
Table 5.1 Effects of Modifying Tasks and Periodic Utilizationc.ccoccoeerererrerernence. 5-21
Table 5.2 Allowed Modify Operations by Task Type and State.............cocoervecvrervverennereennene 5-22
Table 6.1 Time Complexity of Procedures Used By the Task Manager.............c.cocoueereuenesnd 6-9
Table 6.2 Time Complexity of Task Manager Entry Callscoooevuireeiniiiecececreeenens 6-9
Table A.1 Printout Status Number to State Name Translationc.ccccevvervuververerennrerennns A-13

AFIT/GCE/ENG2D-

Abstract

This research begins the process of transitioning real-time intelligent laboratory demonstration
programs into the congressionally mandated implementatior language Ada. The investigation objective is
to analyze the characteristics of real-time intelligent systems and then to design and implement an software
architecture capable of supporting the identified characteristics. By beginning to address the specific necds
of real-time intelligent systems as implemented in Ada, the path from laboratory demonstration to fielded

system is further illuminated.

Conventional real-time systems are fully deterministic allowing for off-line, optimal, task scheduling
under all circumstances. Real-time intelligent systems add non-deterministic task execution times and non-
deterministic task sets for scheduling purposes. Non-deterministic task sets force inteigent real-time
systems to trade-off execution time with solution quality during run-time and perform dynamic task
scheduling. Four basic design considerations addressing those tradeoffs have been identified: control

reasoning, focus of attention, parallelism, and algorithm efficacy.

Non-real-time intelligent systems contain an environment sensor, a model of the environment, a
reasoning process, and a large collection of procedural processes. Real-time intelligent systems add to
these a model of the real-time system’s behavior, and a real-time task scheduler. In addition, the reasoning
process is augmented with a metaplanner to reason about timing issues using the system’s behavioral
model. Additionally, real-time deadlines force the inclusion of pluralistic solution methods in the

intelligent system to allow multiple responses ranging from reactive to fully reasoned and calculated.

AN INTELLIGENT REAL-TIME
SYSTEM ARCHITECTURE IMPLEMENTED IN ADA

I. Introduction

1feel compelled to point out the obvious: a demonstration of some capability (in
Al or other technology) on one restricted instance of a general class of problems is
important as an existence proof of a technology, but it does not satisfy the general need
for a technology that will be able to produce solutions for all unrestricted problems in that
class. It is in this sense that I believe that Al will require much basic and engineering
rescarch from DoD and other sources for many years to come. Given the utility derived
from the relatively modest level of today's technology, I believe that even incremental
gains here will prove of phenomenal value to DoD and the economy in general.
[Simpson, 1988:1]

Sec. 8092. Notwithstanding any other provisions of law, after June 1, 1991,
where cost effective, all Department of Defense software shall be written in the
programming language Ada, in the absence of special exemption by an official
designated by the Secretary of Defense [Public Law 101-511].

If you believe the first quotation, then clearly, DoD use of Artificial Intelligence (AI) techniques
requires a method to create and field Al systems in Ada. Additionally, the relatively new Al field of Real-
Time Intelligent Systems is subject to the same congressionally mandated use of the Ada programming
language. Thus Real-Time Intelligent Systems research must begin to focus some attention on
implementation issues associated with Ada. The research conducted here attempts to do just that:
investigate some implementation issues associated with intelligent real-time systems in Ada. By
integrating three broad areas of DoD relevant research; artificial intelligence, real-time systems, and Ada,
this research incrementally advances the field of Al and assists the DoD in complying with the

congressionally mandated use of the Ada programming language.

1.1. Background

To understand the direction this thesis investigation is taking, it is necessary to examine a number of
areas of computer science. These areas include expert systems, blackboard systems, associate systems, and

real-time systems. The first requirement, however, is a simple definition of what is meant by the term

1-1

‘intelligent real-time systems'. For the purposes of this thesis, an intelligent real-time system (IRTS) is

defined as a computer control system which can perform some initially specified function and which can

1) adapt its control strategy based upon changes in its operating environment,

2) trade off the quality of a solution against the computational time required to calculate a solution

in order to adapt to changes in its operating environment, and

3) guarantee the response times of some set of tasks.

Expert systems are one class of intelligent systems. An expert system tries to perform a given task in
a method that is comparable to a human expert. Typically an expert system consists of explicitly
represented domain knowledge (in the form of a knowledge base) and an inference engine [Klahr, 1986:28;
CLIPS-Ada, 1991] [CLIPSRefMan, 1991]. The knowledge base consists of English-like rules of the form:
If A and B then C. The inference engine (sometimes called a monitor) arranges the rules for execution and
executes them. The knowledge base and inference engine are separate and distinct entities. By adding or
deleting knowledge (rules) in the knowledge base, the expert system's level of expertise can be altered.
Changing the knowledge base altogether results in an expert in another domain.

Blackboard systems were developed to allow for multiple cooperating expert systems [Nii, 1989:13-
82]. The analogy generally used to describe its operation is a group of experts standing around a
blackboard trying to solve a multi-disciplinary problem. Information is placed on the blackboard and each
expert responds by providing partial solutions from their particular field of expertise. Eventually, the group

may solve the problem that no single expert could.

A blackboard system consists of a global database and a collection of knowledge sources (KS) that
act upon the data in the global database. Each of the KS's contributes to the problem solving process by
identifying goals, contributing partial solutions, or evaluating partial solutions. Eventually, as each of the
KS's responds to changes in the blackboard data, a satisfactory solution is reached. The two types of
knowledge sources are domain and control. Domain KS's operate on a specific problem and control KS's

help in deciding which domain KS's are appropriate to execute.

Associate Systems are an area in Al that have received significant DoD attention and funding.

Associate Systems help operators of planes, helicopters, tanks, and submarines cope with the avalanche of

data available to them and make effective decisions to accomplish their mission [Aldern, 1990} [Lambert,
1990]. One of the most heavily funded systems in this category is the DARPA/USAF Pilot's Associate.
(Others include Day/Night Adverse Weather Pilotage System, Submarine Operator's Associate System,
Rotocraft Pilot's Associate, and a Special Operations Forces spin-off effort from the Pilot's Associate
program). To date, each of these systems has used a collection of rule-based approaches and blackboard
systems. Each program has also developed a methodology to acquire the appropriate domain knowledge
and represent that knowledge in a form the system implementor can use [Aldern, 1991:4-1 to 4-20]. All of
these systems so far are proof-of-concept systems. One key concem is the requirement to operate in “real-
time”. Although research is moving in this direction [Aldern, 1991] [Lambert, 1990] [Dodhiawala, 1988]

[Payton, 1991], none currently guarantee operation in real-time and none are implemented in Ada.

Real-time systems usually mean fast systems that operate on temporally valid data. Both the term
fast and real-time are problem specific and precise definitions are only relevant for the specified domain.
For example, a real-time system used to monitor continental drift may only be required to take and record
measurement samples once a month. On the other end of the spectrum, a space shuttle flight control system
may require that hundreds of sensors be checked in milliseconds. The point is that real-time systems must
operate fast enough for the particular application. Generally, this requirement is stated by saying that the
system’s response must be calculated by the required deadline, with little said about how to determine what
is the deadline. Thus a intelligent real-time system must exhibit appropriate behavior fast enough in the

chosen domain.

1.2. Problem Statement

Due to funding limitations and program constraints, the concept of dynamically controlling the real-
time performance of an intelligent system was never fully developed in the Pilot's Associate program.
Additionally, both contracted development teams used implementation languages other than Ada. Thus, to
date no large intelligent real-time system has been developed and implemented in Ada, and no analysis of
such a system performed. This thesis effort proposes to investigate issues in the development of such a
system and analyze some of the performance issues raised. By providing a potential design solution, a
feasibility demonstration, and some analysis of its performance, this thesis can have a direct impact on

future real-time, embedded, intelligent DoD systems.

1.3. Assumptions

This thesis investigation assumes a basic system functional description as outlined in the Pilot’s
Associate program [Lambert, 1991] [Lambert, 1990] [Aldem, 1990] [Aldemn, 1991]. Thus it is assumed
that there exists a large collection of known procedures or tasks that are required to perform a given
function. In addition, the relationship between these tasks and their impact on the current problems facing
the system can be determined. This mapping of functions and relationships to the current context in which
the system is operating is referred to as a plan/goal graph or task network [Wilensky, 1983] [Smith, 1990].
It is not the goal of this thesis effort to design from scratch an intelligent real-time system. Rather, this
thesis effort investigates the mapping of previous designs to Ada, the addition of components necessary to
overcome deficiencies in the previous designs, and the issues arising out of that mapping and addition of

components.

No effort is made to acquire the knowledge necessary to add 'intelligence’ to the system. Instead, a
baseline system similar to the Pilot's Associate is assumed. The goal of this system is not the development
of the knowledge base for such a system, rather it is the mapping of the designed system to Ada and to
investigate the control of such a system. The application of the architecture resulting from this work to a

specific domain is left as future work.

14. Scope

This research proposes to examine intelligent real-time systems but is limited primarily to
knowledge based systems acting as the intelligent agents in the system. It is not the intent of this research
to examine the real-time issues associated with other Al software disciplines, nor are hardware issues
addressed. Thus, no effort is being made to consider machine learning, neural networks, genetic
algorithms, or any of the other Al disciplines. Similarly, no effort is made to examine hardware
architectures, chip designs, or memory systems. It is fully expected that areas requiring performance
improvements will be encountered and that these other Al areas and hardware may provide solutions to
those problem areas. It is left as future research to incorporate those Al technologies and hardware into the

framework this thesis is proposing.

1.5. Approach

The approach used in this thesis effort is typical of most research efforts. First, a literature review of

real-time and intelligent real-time systems is conducted. The purpose of the review is to educate myself

14

and the reader about the issues affecting both traditional real-time systems and intelligent real-time systems.
Additionally, the literature review exposes problems with current systems and examines some potentially
useful methods of dealing with those problems. Specifically, scheduling real-time tasks using the rate

monotonic scheduling theory and methods of scheduling imprecise computations.

From that review, conclusions are drawn about what constitutes an intelligent real-time system.
Once the constituent parts are identified, an architecture is presented that incorporates each of those parts.
The component most lacking in current intelligent real-time systems is identified and methods of including

it into an intelligent real-time system architecture is examined.

Next, a feasibility demonstration system is constructed that investigates incorporating a dynamic
real-time task manager into an intelligent real-time system. The feasibility demonstration is constructed to
allow for validation of the concepts developed in this thesis and provide insight into potential problem

areas. It is not offered as an optimal solution tuned for maximum performance.

Next, an analysis of the implemented system’s performance is made. Specifically, an analysis of the
dynamic task creation and control strategies is made and the impact of each parameter on system
performance identified and quantified in terms of execution speed, code size, and appropriateness for the
context. Additionally, performance problems are traced to either a flaw in the implementation or perhaps a

more serious flaw in the design.

Finally, an attempt to point the direction of future work in this area is made. Drawing on the results

of the efforts of this thesis, a suggested path of continuing research and development is laid out.

1.6. Summary

This research has four objectives. Listed in order of importance, they are

1) development of an integrated set of Ada data and control structures that allows for the
implementation of an intelligent real-time system and architecture to support such a system,

2) implementation of the developed data and control structures into an intelligent real-time system
and a feasibility demonstration of the developed architecture,

3) an evaluation of the implemented intelligent system architecture to determine the utility of the
design and the overhead necessary to support its run-time computational needs, and

1-5

4) identification and evaluation of some performance metrics useful in evaluating intelligent real-

time systems performance.

1.7. Thesis Overview

This thesis follows the pattern used by most scientific research reports. In Chapter 2, the results of a
literature search are presented. Current knowledge in Al systems, real-time systems, and intelligent control
is examined and issues important to this thesis are identified. Additionally, the common components of
intelligent real-time systems are listed. Chapter 3 addresses some of the possible design approaches for
developing an intelligent real-time system and enumerates the design assumptions. The key design
decisions made are discussed. Chapter 4 presents the intelligent real-time system architecture vision
developed and addresses some of the features that are missing in previous architectures. Chapter 5 provides
a detailed look at the developed feasibility demonstration system. The goal of the feasibility demonstration
is to provide confidence in the potential of the architecture presented in Chapter 4 and allow for concept
testing. Chapter 6 presents the results obtained by testing the feasibility demonstration system and the
impact of those results on the proposed intelligent real-time system architecture. Chapter 7 culminates the

thesis with conclusions and recommendations.

1-6

1. Background

The technology needed to build an intelligent real-time system spans a multitude of engineering
disciplines. Those that are relevant to this thesis include traditional real-time system design, real-time
scheduling algorithms, real-time system design in Ada, knowledge representation, expert systems, associate
systems, blackboard systems, planning, and intelligent control. In order to lay the foundation for
understanding the work presented in this thesis, it is necessary to examine some of the more important
aspects of these related technologies. The following background information covers traditional real-time
systems rate monotonic scheduling, then imprecise computation scheduling, followed by intelligent real-
time systems, and culminating with a description of the components needed to implement intelligent real-

time systems.

2.1. Traditional Real-Time Systems

Sprunt, Sha, and Lehoczky provide a good introduction to real-time system design issues and
algorithms [Sprunt, 1989] [Sprunt, 1990]. They classify tasks based upon the task’s deadline and arrival
pattern. Classifications for deadlines are hard and soft. Hard-deadline tasks are defined as "If meeting a
given task's deadline is critical to the system's operation, then the task’s deadline is considered to be hard”
[Sprunt, 1990:2]. Soft-deadline tasks are tasks whose deadline is desirable but not absolutely essential for
correct system operation. Additionally, Sprunt and Sha add the category background task for those tasks

without a timing constraint.

Classifications for task arrival rates include periodic and aperiodic. A periodic task is defined by
Sprunt and Sha as a task that arrives at regular, predictable times. Sprunt and Sha include things like sensor
updates or monitoring tasks in this category. Aperiodic tasks are defined to be tasks with irregular arrival
times and result from "the processing requirements of events with nondeterministic request patterns, such
as operator requests” [Sprunt, 1990:2]. Using deadlines and arrival patterns, they essentially divide the
types of real-time tasks into four categories: hard-deadline periodic tasks, soft-deadline aperiodic tasks,
sporadic tasks, and background tasks. Sprunt and Sha define each task type as follows:

* Hard-Deadline Periodic Task. A periodic task consists of a sequence of requests

arri_\gi‘xil.g at regular intervals. A periodic task's deadline coincides with the end of its
peri

2-1

» Soft-Deadline Aperiodic Task. An aperiodic task consists of a stream of requests
arriving at irregular intervals. Soft deadline aperiodic tasks typically require a fast
average response time.

s Sporadic Tasks. A sporadic task is an aperiodic task with a hard deadline and a
minimum inter-arrival time (the amount of time between two requests).

* Background Tasks. A background task has no timing requirements and no particular
arrival pattern. Background tasks are typically assigned the lowest priority in the
system ... [Sprunt, 1990:2]

Systems with hard-deadline periodic tasks can be constructed efficiently using the rate-monotonic
scheduling algorithm [Sha, 1991] {Sha, 1989] [Sprunt, 1989] [Liu, 1973). This algorithm "assigns
priorities to tasks as a monotonic function of the rate of a (periodic) function” and assumes a priority
driven, preemptive scheduling discipline [Sha, 1991:3). The rate-monotonic algorithm is the provably
optimal scheduling algorithm for preemptive scheduling of hard-deadline periodic tasks [Sprunt, 1990:2].
The rate monotonic theory provides a simple inequality to determine whether a given set of periodic tasks is
schedulable. Theorem 1 below provides a sufficiency test that ensures all tasks meet their deadlines. For
task sets whose utilization, U(n), exceeds that of (2.1), Theorem 2 below is both a necessary and sufficient

test.

Theorem 1: A set of n independent periodic tasks scheduled by the rate monotonic
algorithm will always meet its deadlines, for all task phasings, if

G G ho) =
T + ...+ T < n(2 D) = Un) ¢RY)

n

where C; and T; are the execution times and period of task T; respectively and U(n) is
the utilization of the task set [Sha, 1989:5].

Theorem 2: A set of n independent periodic tasks scheduled by the rate-monotonic
algorithm will always meet its deadlines, for all task phasings, if and only if

: 1|Ir
Vi, 1<i<n, min C.—|=]| <1 22
! S (ke R‘-; fzrjr,l 22)

where C; and T, are the execution times and period of task T; respectively and
Ri={(k,DI1sSk<il=1,..LT;/Te]}. irepresents the task to be checked, k
represents the tasks of equal or higher priority, and / represents the scheduling points for
task i [Sha, 1989:5].

In Theorem 1, for large values of n, U(n) converges to 0.69 (In 2). Assuming the worst case scenario where

all tasks are started simultaneously, Theorem 2 checks if each task can complete its execution by its first

22

deadlines at each scheduling point before task i’s deadline. A scheduling point for a task 71 is the deadline
of each task with a deadline before 1’s.

In addition to using a priority driven, preemptive scheduling discipline, Theorems 1 and 2 also
assume, process switching is instantaneous, the tasks account for all the execution (i.e. the operating system
consumes zero time), the tasks do not interact, tasks become ready to execute exactly at the beginning of
their periods and, task deadlines are always at the end of the period. Continuing research is addressing
some of the limitations associated with the assumptions used to develop Theorem 1 and Theorem 2 [Sha,
1991] [Klein, 1990]. First, the effect of non-zero task switching times is addressed by modifying the
execution time of a task, C; to include context switching times, Cs. In Theorems 1 and 2, the new task
execution time becomes C’; = C; + 2Cj since the processing context is switched at the beginning and end of

each task’s execution.

Task synchronization was addressed by the development of the priority ceiling protocol. “The
priority ceiling protocol has two important properties, 1) freedom from mutual deadlock and 2) bounded
priority inversion, which means at most one lower priority task can block a higher priority task during each
task period” {Sha, 1991:6). Inclusion of the priority ceiling protocol allowed the formulation of the two

additional theorems:

Theorem 3: A set of n periodic tasks using the priority ceiling protocol can be scheduled
by the rate monotonic algorithm, for all task phasings, if the following condition is
satisfied [Sha, 1989:15].

Gy v Sy mB B <oy
Ti Tn Tl Tn—l

23)

Theorem 4: A set of n periodic tasks using the priority ceiling protocol can be scheduled
by the rate monotonic algorithm, for all task phasings, if and only if the following
condition is satisfied :

& 1 |IT C B
Vi, 1Si<n, min C—|—=|+ =+ —4| <1 24
i i<n 0% 3 ; ,rroll T, T, 24

where C;, T;, and R; are defined in Theorem 2, and B; is the worst-case blocking time for
task / [Sha, 1989:15].

Theorems 3 and 4 provide generalized forms of Theorems 1 and 2 that handle blocking due resource
sharing or task synchronization. To handle soft-deadline aperiodic tasks the Deferrable Server and Priority
Exchange algorithms can be used [Sprunt, 1989:11]. Both of these approaches create a high priority

2-3

periodic task (called a server) for servicing aperiodic tasks. The goal of each algorithm is to preserve the
resource bandwidth allocated to aperiodic tasks; allowing immediate execution of the aperiodic task when it
arrives. In the case of the Deferrable Server, during each server period, the aperiodic task's time is held for
the entire period and replenished at the end of the server's period. Thus when an aperiodic task arrives, it is

serviced immediately if time remains in the aperiodic task's time budget.

The Priority Exchange algorithm, as the name implies, exchanges its priority with lower priority
periodic tasks whenever there are no aperiodic tasks ready for execution. At the end of the server's period.
the aperiodic tasks priority is again raised to the highest level. Again, since the aperiodic task always has
the highest priority, the Priority Exchange algorithm ensures that aperiodic tasks are handled immediately
when they arrive if time remains in the aperiodic task's time budget. The difference between the two
algorithms lies in their complexity and schedulability bounds as discussed by Sprunt, Sha, and Lehoczky
[Sprunt, 1989:6-10].

The point of this discussion is that mathematically precise methods exist for real-time system design
of systems composed of static priority, hard-deadline, periodic, sporadic, and/or aperiodic tasks. The
importance of rate-monotonic scheduling theory for use in intelligent real-time systems lies in its feasibility
test and corresponding priority assignment. The feasibility of a periodic task set can be quickly calculated
and the result acted upon. Additionally, the scheduling problem associated with assigning priorities is
significantly reduced if not eliminated.

2.2. Scheduling Imprecise Computations

The preceding discussion dealt with methods to determine the feasibility of a task schedule and
schedule fairly well defined tasks to achieve real-time performance. There exists another class of tasks that
vary in processing times and so cannot be handled easily by the preceding methods. The imprecise
computation technique can be used to help schedule tasks that fall into this category [Liu, 1991]. It allows
tradeoffs between result quality and computation time. This quality/time trade-off helps prevent timing
faults and assists in achieving graceful degradation.

Liu, Lin, Shih and Yu explain that their basic strategy revolves around the division of all time critical
tasks into two subtasks: a mandatory subtask that provides an adequate result and an optional subtask that

provides a refined result [Liu, 1991:58]. If the optional subtask is scheduled and executes to completion,

24

then the result is said to be precise. If the optional task is terminated before it completes, and the

mandatory task has been completed, then the result is said to be imprecise.

Three methods and the associated costs of each method for creating mandatory and optional subtasks
are discussed by them [Liu, 1991:59]. The first method is the milestone method and takes advantage of
monotone tasks. A monotone task is one whose result quality does not decrease as the task executes. If the
results of the task's execution and error indicators are recorded at appropriate instances, then the task's
result grows more precise as it is allotted more time to execute. The user can then decide, based upon the
error indications and result, when to terminate the task. The cost of the milestone method is the storing of

the intermediate results.

The second method described by them is referred to as a sieve function [Liu, 1991:59]. In this
method, computation steps (and therefore result quality) are traded off for processing time. The example
given to illuminate how this method is employed involves using a previous cycle's noise level estimate
when examining this cycle's radar returns. The cost for sieve functions is higher scheduler overhead. Liu,
Lin, Shih and Yu classify this type of scheduling problem as a 0/ constraint problem [Cormen, 1990:335].
Since no benefit is gained unless the entire sieve function completes before its deadline, it should either be

scheduled to execute to completion or not scheduled at all.

The third method they describe is the multiple version method {Liu, 1991:59]. As the name implies,
each task has two versions; a primary version and an alternate version. The primary version has a longer
execution time, but produces a precise result. The altemate version produces a less precise result in a
shorter time. The cost of the multiple version method includes both storage space for the multiple versions
and higher scheduler overhead. Again, Liu, Lin, Shih and Yu classify the multiple version method as a 0/1
constraint problem for the same reasons cited above. In this case, scheduling the primary version is
considered to be the same as scheduling both the mandatory subtask and the optional subtask. Scheduling
the alternate version corresponds to scheduling only the mandatory subtask.

Liu, Lin, Shih and Yu then go on to develop a basic workload model for all imprecise computation
methods they described [Liu, 1991:59-60]. Given a set of preemptable tasks,

T=(T],T2,...Ty)

2-5

the tasks T; in the set can be described by the following parameters:
or Ready time at which time T; becomes ready for execution
+dj Deadline by which T; must be completed
T Processing time required to execute T; to completion
o w;i Weight that measures the relative importance of T;
«M; Mandatory subtask of T;
< 0; Optional subtask of T;
°mj Processing time required to execute M; to completion

*0j Processing time required to execute O; to completion

Note that in the preceding definitions, m; + o; = 1;. Additionally, the deadlincs of the subtasks M;
and O; are the same as the deadline for T; . The ready time for the M; subtask is the same as 7; but the O;
does not become ready until after the mandatory subtask completes.

A valid schedule of T is defined as one that "assigns the processor to at most one task at any time,
and every task is scheduled after its ready time. Moreover, the total length of the intervals in which the
processor is assigned to T; , ..., is at least equal to m; and at most equal to 1;." [Liu. 1991:59].
Additionally, a valid schedule is termed feasible if every task is completed by its deadline. Schedulable
task sets have at least one feasible schedule.

One final parameter used by Liu, Lin, Shih and Yu is the emror parameter, €;. This parameter is used
to calculate a value for processing the optional subtasks. The error parameter is calculated by the equation
&;. = Ej(oj - 6j). Here, o; is the amount of processor time allotted to O;, and E; is assumed to be a

monotone non-increasing function of o;.

Once the imprecise computation scheduling problem is defined in these terms, it becomes a matter of
applying an appropriate algorithm to obtain a particular scheduling goal. Scheduling goals can be designed
to minimize the total error, average error, the number of discarded optional tasks, the number of tardy tasks,
or the average response time [Coffman, 1976] [Liu, 1991]. It becomes the job of the system designer or the

run-time controller to determine the appropriate scheduling goal at any particular instant during the
system's operation.

26

2.3. Intelligent Real-Time Systems

As vague as it may sound, real-time in an intelligent system seems to mean “"fast enough”.
Traditionally, as discussed above, a real-time system's performance is dictated by hard limits imposed on the
amount of time a task has to execute. These limits are normally pre-defined by the process that is being
controlled and the speed of the equipment used to control that process. For example, in a flight control
system the real-time requirements of the digital computer are dictated by the speed of the control mechanisms
which move the control surfaces, the speed with which the instruments monitoring the aircraft attitude can
detect changes resulting from control surface movements, and the time that the laws of aerodynamics
establish a response must be made. In an intelligent real-time system, real-time performance is context
dependent. The response time required of an autonomous aircraft from the detection of a threat depends upon
how quickly a response is required to ensure a successful outcome. The system obviously must respond
much faster to an inbound missile targeted at the ownship than it does to a threat aircraft which is beyond the

lethal radius of any weapons it can carry.

The key point of this type of variable response timeline is that it places the additional burden upon
the system of being able to determine the time constraints at any particular instant. A run-time,
dynamically adaptable control structure appears to be required [Payton, 1991] (Lambert, 1990] (Lizza,
1989] [Stankovic. 1988]. The system must be able t¢ respond to rapidly changing requirements and still
produce valuable output. Two DoD funded programs, Pilot's Associate and Adaptive Suspension Vehicle,
have been addressing these issues. The programs, as they relate to intelligent real-time systems. are

examined below.

2.3.1. Pilot’s Associate Program. Basically, the Pilot's Associate program is developing an
electronic back-seater to assist tomorrow's single-seat fighter pilot cope with the ever increasing amounts of
information presented to him [Whelan, 1990] (Banks, 1991] {Aldern. 1990] [Lambert. 1990] [Aldem,
1991]. The Pilot's Associate is developing a system to help the pilot identify the crucial information from
the background noise. It is the system which makes the aircraft understand the pilot's objectives,

preferences, and restrictions, and works in the tireless fashion of the computer in complying with them.

Figure 2.1 shows the overall concept of a Pilot's Associate. The system consists of six functional
elements: Situation Assessment (SA), Mission Planner (MP), Tactics Planner (TP). Pilot-Vehicle Interface

(PVI), System Status (SS). and the System Executive (SE). SA is responsible for asscssing the world

2-7

external to the aircraft. MP is responsible for giobal planning from take-off to landing. TP is responsible
for responding to immediate threats. PVI ensures the system provides what the pilot wants, when he needs
it. SS is responsible for assessing the world internal to the aircraft. And finally, SE is responsible for
ensuring that all elements are solving not only the same problem but also the right problem. In the
following discussions, the term system refers to the entire collection of functions that make up the Pilot's
Associate. A sub-system or module is one particular functional element (e.g. Tactics Planner. Pilot Vehicle
Interface). A machine is a computer that pieces of the functional elements are implemented upor.. (Note
that originally, the system was developed with each module to reside upon a different machine. However,
as the system developed over time, it became apparent that different pieces of the modules needed to

closely work together. This forced a migration of module pieces together based primarily upon data usage).

2.3.2. Lockheed's Pilot's Associate The current Lockheed version of the Pilot's Associate is
probably the furthest along in trying to implement a fairly complex intelligent real-time system [Aldern,
1991]. Essentially, the approach is to code the system in C++ and then to statically distribute the set of
coded tasks across as many processors as necessary to achieve real-time performance. The process is based
upon the premise that processing power will be available (or can be added) to operate these systems in real-
time and thus no separate executive for controlling execution exists. This approach has some potential

problems.

First, the domain chosen for these systems, by their very nature, is dynamic. It is widely held that
predictability in any combat situation will lead to higher risk of death or failure. Thus systems that operate
in a combat situation, or any competitive situation, face continually changing environments as one systcm
tries to overcome or defeat another. Any system designed for a competitive environment must be able to
change quickly as new knowledge is obtained. In the current Lockheed Pilot's Associate. since the
knowledge acquired is translated directly into an implementation language (C++). changes potentially
require significant work to locate the piece of code to change, determine how to change it. code the
changes, and tune the system performance to again ensure real-time constraints can be meet [Aldern,
1991:4-6 to 4-20). Essentially. the performance goals of the program have eliminated what was the
knowledge base as a separate entity and distributed the knowledge throughout the system. Given the syntax
of the Ada language, this same 'knowledge coding' approach may be necessary for any DoD system.

2-8

EXTERNAL

SENSORS SITUATION BETTER ’

ASSESSMENT ECOM
DECISIONS

PILOT
INTERNAL |N‘4%|algkge
SENSORS

MISSION

MISSION <3 PLANNER

DATA

PILOT'S ASSOCIATE

IMPROVED

COMBAT
EFFECTIVENESS
& SURVIVABILITY

Figure 2.1 Overall Concept of the Pilot's Associate

Additionally, the computational times for a large percentage of Al approaches are generally non-
deterministic (i.e., the search space is so large that an exhaustive search is impossible, thus some s.rt of
guiding heuristics are used to get a solution that satisfies some domain specific criteria). Traditional real-
time systems do not handle non-deterministic tasks well and mapping an intelligent system’s approach into
a traditional real-time system usually means modifying the original problem to eliminate some of the
difficulties associated with real-time operation. Generally, tasks are off loaded from the computer to the
human operator. If no human operator exists, as is the case in a fully autonomous system, the system

generally is given a 'canned’ response to apply in all conditions.

Finally, this approach assumes there always is, or will be able to obtain the necessary processing
power to handle any possible workload. Although this may be true, I tend to believe that the opposite is
true; namely that there will never exist enough processing power to solve all problems simultaneously.
This should not be taken as a condemnation of the current Pilot's Associate approach. For example, one
can envision the problem as a standard set partitioning problem where the sets are combinations of the tasks
and the goal is to partition those tasks among n processors as efficientlv as possible [Brassard, 1988:92]

[Cormen, 1990:946] [Tindell, 1992]. If the initial engineering design cffort has ensured that some amount

29

of excess computing power exists, the problem is then reduced to creating a tool to solve the set partitioning
problem. At the point where no more additional tasks can be added, one simply upgrades the existing

processors to newer and faster versions, or adds another.

The Lockheed Pilot's Associate program is currently not experiencing any major run-time problems
with this method. However, the system is not completed and is known to have reduced functionality
because of the real-time constraints. If at some future point, processing power becomes an insurmountable
problem, a major system redesign will be required. Because of this constraint, Lockheed's real-time

method will not be used in this thesis investigation.

2.3.3. McDonnell Aircraft’s Pilot's Associate McDonnell Aircraft Company's (McAir) Pilot's
Associate program real-time efforts were divided into two major thrust areas. McAir tackled the actual
implementation and sub-contracted FMC Corporation to investigate the software design and architecture
issues. Since McAir's implementation built upon the work FMC did, a review of the general model FMC
created is done first. Following that discussion, the McAir implementation of that model is examined. The
discussion is fairly in-depth since the work by FMC and McAir shapes the direction of this thesis effort.

Intelligent real-time system analysis by FMC [Dodhiawala, 1988] reached two conclusions:

1. In a system such as the Pilot's Associate, there will never be enough processing power to do all

required tasks, which dictates then,
2. Real-time performance cannot be obtained by speed alone.

Although the number and speed of the processors used in implementing a real-time system are a
primary concemn, they are not by any means the only concerns in a complex intelligent real-time system. The
software architecture which controls the operation of the system plays an equally large part in achieving real-
time performance. FMC examined those characteristics (other than processor type and processor speed) of a

complex, real-time, intelligent system that affect it's real-time performance.

FMC's research determined there are four basic dimensions of an intelligent real-time system; speed,
responsiveness, timeliness, and graceful adaptation [Dodhiawala, 1988:1-2]. Speed is the dimension
concerned with the number of tasks executed per time unit. Speed can be increased by more and faster

processors or by increasing the efficiency of the algorithms. Responsiveness is the ability of the system to

2-10

take on new tasks quickly. It requires that the system be predictive enough to begin composing and executing
responses to new developments rapidly, and to appear as though all requests are handled instantly.
Timeliness is the system's ability to conform to task priorities. In other words, the system must be able to
perform those functions that are the most urgent when they are required. Any responses must be able to be
determined, presented, and acted upon in order to affect the current situation, not the past. Graceful
adaptation refers to the system's ability to reset prioritics based upon the changing processing load of the
system. When the workload exceeds the capacity of the system, it must be able to focus its resources on those
tasks that are the most crucial for that moment. Clearly, three of these architectural features are dynamic in

nature and require run-time control to ensure the desired system performance is obtained.

Starting with the assumption of a blackboard implementation of the intelligent system, FMC believes
the run-time adjustable parameters of execution margin, scheduler heuristics, and channel priorities can be
used to form the basis of run-time, closed-loop, control of knowledge-based systems [Dodhiawala, 1988:7].
The execution margin is defined as the number of knowledge sources that are allowed to execute during each
pass through the top level control cycle. Scheduler heuristics refers to the rules of thumb used to order the
currently active knowledge sources for execution. Channel priorities are run-time assigned values that dictate
how important a particular event is. Figure 2.2 shows the internal operation of the reasoning process in an
intelligent system that allows adjustment of these parameters. It should be pointed out here that although at
the top level, the intelligent system operates in an asynchronous fashion: inside the reasoning process,

synchronous control is exercised.

In Figure 2.2, the frur channels (represented by the thick gray horizontal lines) are EMERGENCY
for processing events immediately, HIGH for processing fairly critical events, AVERAGE for processing
routine events such as monitoring the mission plan, and LOW which processes items only when the other
three channels are empty. The channel priority assigned to an event determines the relative importance of

that event.

The four gray rectangles in Figure 2.2, Trigger, Pre-Condition, Schedule, and Execute, represent the
stages a knowledge source goes through. The Trigger step attempts to trigger knowledge sources based on
the attributes of either the asynchronous external events or the synchronous internal events. It is important
to realize that an event can trigger more than one knowledge source. When a knowledge source is
triggered, its variables are set, establishing the context for the execution of the knowledge source or

instantiation (called a Knowledge Source Activation Record or KSAR). The PRECONDITION step

2-11

establishes whether a valid context exists for the execution of that KSAR. Possible values returned in this
step are OBVIATE -- the KSAR is irrelevant or inappropriate for the triggering event, NIL - the context has
yet to be established, or the preconditions are satisfied and the KSAR moves to the scheduler to be
scheduled. In the Schedule step, KSARs are ranked and scheduled for execution based upon the current
scheduler heuristics. These heuristics evaluate the KSAR based upon its importance and urgency. An
important KSAR is one that is relevant to the current system goal, while an urgent KSAR is one whose
deadline for execution is approaching. The Execute step will execute the KSARs based upon the execution
margin. The execution margin determines how many KSARs on each priority channel will be allowed to
execute during each run through the top level control cycle. Using this approach, and assuming that not all
tasks can be processed in real-time, FMC believes that the control overhead involved is justifiable in terms

of the total system performance [Lambert, 1990] [Dodhiawala, 1988].

Q- Internal Event [J - External Event [J- Knowledge Source |

www - Channel
External s External

Events Pre- Events
Trigger Condition Schedule Execute

28

Event Data [
Channel Channel e

Priorities Context Heuristics

Margin
il L

Figure 2.2. Reasoning Process Diagram

McAir's system ran on four Texas Instruments Explorer II machines with an assortment of other
machines providing support functions [Lambert, 1991]. The top-level architecture is shown in Figure 2.3.
Each of the sub-systems (indicated by the circles) operated asynchronously and ran in parallel on

independent machines. The system was event-driven, allowing communication of changes to blackboard

2-12

data instead of transmitting entire updated blackboard data structures. The blackboard itself was distributed
among each of the machines that make up the system. Each sub-system was further divided into a

blackboard process, I/O process, and a reasoning process as shown in Figure 2.2.

SA Situation Assessment
PVI Pilot/Vehicie Interface
SE System Executive

MTP Mission /Tactical Planner
SS system Status

Crew Station

Flight
Manager

+ Small Scale Paralielism
- Asynchronous PA-Sim Operation

« Asynchronous Top Level Cycle

+ Dedicated Support Function Processor

Figure 2.3 McAir's Top Level Architecture

Using FMC’s approach, McAir's team incorporated some of the real-time concepts into their system.
The system was implemented primarily in Inference Corporation's Automated Reasoning Tool (ART),
modified to allow for some PA-specific functions. A modification to the ART agenda mechanism allowed
for heuristic-scheduling, a feature from FMC's real-time work. Additionally, the Knowledge Source syntax
was modified to put trigger and pre-condition patterns into a context slot and extra declarations were added

to include specification of the knowledge source urgency and importance [Lambert, 1991].

The module internal architecture shown in Figure 2.4 implemented the blackboard, I/O. and
reasoning processes [Lambert, 1991]. Basically, the ART working memory used Rete Net pattern matching
provided with ART to match the context of the knowledge sources [Lambert, 1991] [Fanning, 1990]. Once

a knowledge source was matched, it was placed on the agenda for execution. From the agenda, the

2-13

knowledge source was executed using a LISP macro that expanded into ART rules. The LISP macro
allowed McAir to augment the ART rule representation and include the real-time scheduling feaiures of
importance and urgency. The gray lines indicate the control cycle. Again, ART was modified to allow for
communication processing to take place after each knowledge source was activated. The control cycle was
designed so that the Blackboard and I/O processes slept if not required, thus allowing more of the machines

resources to be used in knowledge source execution.

f.o.ackboard Data

Source Inter-Blackboard

Execution Communication Data
External
External 2
Communication Data §: Communication Data
Inter-Blackboard
Communication Data

Figure 2.4 McAir's Module Intemnal Architecture

2.3.4. Adaptive Suspension Vehicle. The Adaptive Suspension Vehicle (ASV), is a self-contained
six-legged, human operated, walking vehicle. The ASV consists of an engine driving 18 hydraulic leg
actuators, over 100 leg position, leg velocity, leg pressure, and inertial sensors, and a laser range scanner
[Payton, 1991:53] [Bihari, 1989:59-62]. The processing suite consists of seven Intel 80386 processors and
two special purpose numerical processors. As of August, 1991, the control software was approximately
100,000 lines of Pascal source code.

The ASV planning and control hierarchy is shown in Figure 2.5. The human operator “flies” the
vehicle with a joystick. The Planned Vehicle responds to the joystick commands by providing leg

movements to fulfill them while simultaneously avoiding local obstacles. The Planned Vehicle sees the

2-14

Servoed Vehicle as a system of interacting legs. The Servoed Vehicle takes plans provided to the Planned
Vehicle from the Motion Planner and sends the appropriate commands to each Servoed Leg. Each Servoed
Leg knows its corresponding physical leg's state from the sensors mentioned above. The Servoed Leg
translates the commands from the Servoed Vehicle into direct commands to the Physical Leg's three
hydraulic actuators. {Payton, 1991:52]

The Servoed Legs and Servoed Vehicle operate in the a well-defined world and as such, functional
as 'traditional real-time systems' as discussed in section 2.1. Extensive analysis of the physical legs being
controlled resulted in a 10ms period for each Servoed Leg and a 25ms period for Vehicle Servo. Although
the Leg Servo ideally runs at a 5Sms period, processing power limitations forced a 10ms period and
correspondingly slightly degraded performance. The Leg Servo can even miss an occasional period,
allowing for some slight timing constraint negotiability. The rate-monotonic scheduling algorithm (section

2.1) was used to implement these fixed period, fixed priority tasks.

Navigated Vehicle

Planned Vehicle

{cycle 25ms)

Figure 2.5 ASV Planning and Control Architecture [Payton, 1991:55]

2-15

The Motion Planner differs from the servo control in that it operates on the constantly changing
terrain. It periodically produces a continuous velocity plan segment that is steadily consumed by the
Servoed Vehicle. The plan segment is made up of two parts: a normal portion containing requested body
acceleration to be used for a certain duration into the future (Piy), followed by a safety portion containing
contingency deceleration to zero body velocity (Pis). Each newly generated plan segment overwrites the
previous plan segment’s safety portion. This two portion plan segment method operates as a 'forward

recovery' technique in case of planning system failures as illustrated in Figure 2.6.

The Motion Planner’s period varies between 100ms and 500ms depending upon the current state of

the vehicle and the environment. Payton and Bihari state that the time to calculate a plan segment is

approximately:
Vmax
DTcp = —*/Ai + DTov
SR ~ 1 2.5)
where
DTcp = the time required to compuie a plan segment
Vmax = the vehicle's maximum allowable velocity

As = the acceleration during the safety portion of the plan segment;

SR = the rate at which the internal simulation of the vehicle’s movements runs, as a
multiple of real time;

DTov = a fixed amount of overhead time associated with computing a plan segment
[Payton, 1991:56]

Although not currently implemented in the ASV, the existence of Vmax in the planning cost equation
(2.5) could allow the scheduling algorithm to adjust its performance to meet timing constraints, telling the
vehicle to slow down to allow for more planning time. The ASV does, however, use an adaptive
scheduling algorithm. It starts with short planning periods and monitors how close to its deadline each
segment completes. Payton and Bihari state that "If plan segments are completed uncomfortably close to
their deadlines, it lengthens the normal portion of the plan segments and increases the planning period.”
[k ayton, 1991:56].

2-16

Velocity

N

Deadline 2 Deadline 3

Time

Figure 2.6 ASV Plan Generation [Payton, 1991:55]

In summary, because the six-legged vehicle can become unstable if the legs operate independently,
the ASV fits nicely into the centralized, hierarchical control structure. The ASV has successfully integrated
both a fixed rate-monotonic scheduling algorithm (controlling the leg servos) and an adaptive scheduler
handling the planning tasks. The two-portion plan segment (normal and safety) technique is adaptable to a
variety of systems. One can envision an airborne autonomous vehicle simply circling if the planner misses
its deadline. Additionally, the link Payton and Bihari make between planning time and vehicle velocity is
also adaptable to other domains. Both of these features should be addressed in any intelligent real-time
system. However, this thesis is focusing on the software architecture issues of intelligent real-time systems,

and not on domain-specific techniques.

2.4. Common Intelligent Real-Time System Components

In order to proceed with the development of an architecture to support intelligent real-time systems,
it is necessary to determine what components appear to be common among the systems discussed so far.
The architecture as developed in the Pilot's Associate program is perhaps a good place to start (Figure 2.2).
In the figure, the top level components that have been identified are a Blackboard Process, an I/O Process,
and a Reasoning Process. What is missing from this architecture is the notion of a real-time task scheduler
or task manager. Basically, the McAir Pilot's Associate approach to real-time can be summed up by the

term 'agenda-management’. Because there is no preemption, or guarantee of any kind on the execution time

2-17

of the KSARs, the approach needs to be enhanced to handle hard real-time constraints and provide some

guarantees of performance.

The ASV goes one step further in that it does add a real-time task scheduler. It uses a real-time
operating system, employing ratc-monotonic scheduling to control execution of the leg actuators. The ASV
also includes a component that performs the I/O Process similar to the Pilot's Associate, namely the
component that sends commands to the leg actuators and receives data from the system's sensors.
Additionally, it possess a reasoning process in the form of the motion planner. However, its architecture

does not address the computation time — solution quality trade off issue.

In [O’Reilly, 1988}, O'Reilly and Cromarty propose still another component of an intelligent real-
time system called a metaplanner. The job of the metaplanner is to plan, monitor, and evaluate the
execution of problem solving. OReilly and Cromarty state that such a system would also require a model
of the computational times and cost of the various tasks the system can perform. With this 'system model'
the metaplanner is able to make trade offs about which tasks to execute and when, given the current state

the system finds itself in and the amount of time available to calculate a solution.

From all of these sources, I have drawn the conclusion that the following components need to exist

in any intelligent real-time system architecture:

o Environment Model. This component performs the job of the blackboard in the Pilot's Associate
program, acting as a repository of information about the current state of the environment

external to the system.

» System Model. This component is used to evaluate potential threads of execution. It consists of

a graph like structure which indicates the hierarchical ordering of the system’s problem solving.

¢ 1/O Process. This component translates signals from the environment into a format usable by

the system and vice versa.

* Reasoning Process. The Reasoning Process or perhaps metaplanner, provides the adaptive
control needed by the system to act ‘intelligently’. Its primary job is to determine what the

current task set is in contrast to solving the problems associated with the current task set.

2-18

o Task Scheduler. The Task Scheduler schedules the workload of the system based upon
directions from the Reasoning Process, and provides some real-time guarantees of meeting

deadlines.

2.5. Schedulable Task Types

I have also drawn the conclusion that in an intellig:nt real-time system there exist three broad
categories of tasks: periodic, singular, and any-time. Each task also is broken into a mandatory part and an
optional part. Mandatory task parts represent the minimum acceptable processing required in order to
complete a task. Optional task parts represent the additional processing to increase a solutions quality. All
mandatory task parts are fully deterministic while the optional task parts execution time depends upon the
type of algorithm used.

The three task types allow for a mapping of the task types discussed in sections 2.1 and 2.2. Periodic
tasks are real-time periodic tasks as described in section 2.1. Both the mandatory and optional parts of
periodic tasks are fully deterministic. Singular tasks are non-periodic tasks that generalize the sieve
function and primary/alternate task types in section 2.2. The optional part a singular task gives a more
precise solution, but requires more processing time to compute. Any-time tasks generalize the monotone
tasks in section 2.2. The optional part of an any-time task provides solutions whose quality increases with

processing time.
2.6. Summary

Methods to determine the schedulability of periodic task scts are well defined. Methods also exist to
schedule tasks which have non-deterministic execution times. Also, intelligent real-time systems are being
developed that operate in a number of different domains. However, no intelligent real-time systems are
currently addressing dynamic real-time task scheduling and control. The Pilot’s Associate program has
developed a system to dynamically adapt and control the execution of a knowledge-based system and is
described in section 2.3.3. What the Pilot's Associate system is missing is a method of ensuring that tasks

will meet their deadlines.

By integrating some of the traditional real-time systems methods, imprecise computation scheduling
methods, and techniques developed in the PA and ASV programs, developing an intelligent real-time
system architecture in Ada is feasible. The goal of this thesis research is to develop the architecture of such

a system and demonstrate the feasibility of the design; in particular, demonstrate the ability to dynamically

2-19

create, schedule, and execute tasks to achieve real-time performance. Analysis of the results of this
examination should allow one to suggest heuristics that can be used to dynamically determine the current
scheduling policy.

2-20

HI. Design Approaches, Assumptions, and Key Decisions

Chapter 2 provided some necessary background needed tr design and implement an intelligent real-
time system (IRTS). This chapter draws from that background informat. a and provides design
methodology for implementing such a system. In particular, how the architecture iacorporates the common
IRTS components identified in Chapter 2 is examined. In this chapter, performance measures for IRTS are
examined along with design considerations that can be used to affect the performance measures. Following

that, some basic design assumptions are stated and two possible design approaches discussed.

3.1. Performance Measures

Before attempting to design an architecture that supports intelligent real-time systems an
examination of potential performance measures is prudent. Once these measures have been defined, it is
then possible to begin making design decisions with an idea of the performance impact such decisions will

have. The definition of performance measures then is a critical element in any design process.

A prevalent, but inaccurate, belief is that real-time systems are concemed with execution speed
alone. In [Shamsudin, 1991], [Dodhiawala, 1989] and [Dodhiawala, 1988] the authors identify four

performance measures for real-time systems. Those performance measures are as follows:

¢ Speed. This performance measure refers to the number of tasks executed per unit time. Speed is
highly dependent upon the processing hardware. Generally, more and faster processors increase
this performance measure. Additionally, efficient algorithms can increase the speed of a system.

* Responsiveness. "Responsiveness refers to the ability of the system to take on new tasks
quickly. Operating in a rapidly changing dynamic environment, a responsive system perceives
new developments early enough to compose and execute responses, possibly at the expense of
ongoing tasks that may be delayed or even abandoned" [Dodhiawala, 1988:1-2].

e Timeliness. This measure "characterizes the system's ability to conform to task priorities”

[Dodhiawala, 1988:2]. Assuming that not all tasks can be finished by their deadlines, a timely

3-1

system is one that finishes as many as possible. Thus some tasks must be "postponed, scaled
down or discarded to allow the other work to be completed on time" [Dodhiawala, 1988:2].

* Graceful Adaptation. "This refers to the ability of the system to reset task priorities according to
changes in the resource availability and/or demand and workload” [Shamsudin, 1991:15].

These performance measures are well suited for describing both traditional and intelligent real-time
systems. However, two additional measures should be considered. The first is data consistency and the
second is solution quality. Data consistency refers to the system’s ability to maintain a timely and
consistent view of the environment in which it operates. A timely view of the environment ensures that the
system is solving problems that exist currently, and not responding to events that have been superseded by

the passage of time.

A fundamental premise of intelligent real-time systems is that solution quality can be traded off
against computation time to produce better solutions to the more important tasks. In order to determine the
effectiveness of the system in performing this job, some measure of the system’s solution quality must
exist. This measure is probably the most domain specific of the performance measures mentioned thus far,

but should be addressed by any evaluation effort.

Summarizing, the performance measures are speed, responsiveness, timeliness, graceful adaptation,
data consistency, and solution quality. With the performance measures identified. the design effort can
begin to focus on ways to affect those measures. In the next section, general design considcrations are

examined and related to the performance measures they are atlempting to address.

3.2. Design Considerations

In [Dodhiawala, 1988:6] the authors presented a number of candidate methods useful when
designing a real-time system. They suggest that a designer should consider control reasoning, focus of
attention, parallelism, and improving algorithm efficacy when addressing design issues. Control reasoning
is based upon the notion that knowledge about task demands, time constraints, system goals. and resource
demands can be used to make smarter scheduling choices. Control reasoning can be used to affect graceful
adaptation by recognizing overload situations and adjusting task priorities appropriately. Control reasoning
can also impact the solution quality, timeliness, and responsiveness of the system. The limiting factor in

applying control reasoning is the processing overhead associated with performing the reasoning and

3-2

implementing the controls. Temporal reasoning, speed/effectiveness trade-offs, supervisory control, and

discretionary 1/O are examples of implementable control reasoning strategies [Dodhiawala, 1988].

The capability to quickly respond to critical events is a desirable feature of any real-time system.
This ability is referred to as the focus of attention. Preemption of executing tasks, prioritization of ready
tasks, and the ability to change processing contexts quickly are methods of implementing focus of attention.
Implementing focus of attention strutegies directly affect a system’s responsiveness and timeliness,

generally with a corresponding decrease in speed as a result of processing the context switches.

Parallelism is primarily a concept associated with spced. By exploiting parallelism at both the
architecture and application levels, significant performance gains are possible [Sawyer, 1990]. Multiple
processors or concurrent processes are examples of methods to achieve parallelism. Increased parallelism
generally results in increased design complexity. Adding parallelism to systems as an afterthought can be a
significant challenge, since most of the inherent parallelism in the system may have been lost in the

implementation.

Algorithm efficacy also primarily addresses the speed performance measure, but has a great impact
upon the timeliness of the system as well. Methods used to improve algorithm efficacy include algorithm
caching, incremental algorithms, and anticipatory processing. Generally, algorithm efficacy is an issue at
design time, but each algorithm is tuned during implementation to meet system timeliness or speed

requirements.

From the design perspective, each consideration needs to be addressed and each trade-off examined.

First however, it is necessary to present the design assumptions that are a driving factor in this thesis effort.

3.3. Design Assumptions

The first assumption is that in any intelligent system, the majority of the work performed by the
system is procedural in nature [Wilber, 1989:75]. For example, if one was to create a fully autonomous
system to pilot a modern fighter aircraft, the existing computer software that drives the flight control,
sensor, weapons, and navigation systems would in all likelihood not be replaced with Al programs. Rather,
an Al system would be installed to control these existing systems, similar to the way in which a human

pilot decides what system to activate, what mode to activate it in, and when to activate a particular system.

Thus the Al system treats the other aircraft systems as either tools for gathering information or as effectors

to achieve a desired state. It does not duplicate the procedural functions already performed by the other

systems.

The first assumption thus leads directly to the second assumption and the primary system design
goal: design a system that allows an intelligent agent to control procedural tasks in such a way as to
effectively and efficiently achieve a dynamically determined goal within real-time deadlines. The focus of
the design effort then is not on the design of an IRTS for a specific domain, but rather on an architecture

necessary to implement any intelligent real-time system.

An additional assumption is the use of Ada as the implementation language. Research and
development communities, in my opinion, seem to believe that an implementation language is of little or no
consequence to a research effort. In general this may be true, however, the rising trend in DoD software
costs has resulted in a public law that dictates the use of the Ada programming language for all DoD
software, making the implementation language an engineering issue. Any software system that is migrating
into operational use must address the Ada implementation question. In essence, the implementing language
is an engineering hurdle to overcome, similar to choice of the technology used to implement integrated
circuits. This thesis effort recognizes the issue and attempts to add some basis for making decisions on the

use of Ada in intelligent real-time system design.

The final design assumption stems from the belief that not all the desired processing can be done in
the required time. The design assumption is that overload situations occur. If the opposite were true, then
there is little need for any explicit control structure to prioritize what the system is doing. This design
assumption dictates that the system must be able to prioritize the current task set to ensure those that are
most relevant to the current situation are executed first and completed by their deadlines. Consolidated and

restated, these four design assumptions are:

1) A real-time intelligent system consists of a large collection of procedural tasks whose execution

timeline is determined by an intelligent agent.

2) The focus of this effort is on the software architecture of a system that provides the intelligent

agent the necessary control to achieve its current goals in a timely manner.

3) The system must use the Ada programming language for implementation. Thus, it is critical to

show how the concepts outlined in this thesis can be implemented in Ada.

4) The system is at times overloaded and thus must be able to dynamically prioritize the tasks.
(Note that this thesis research does not purport to develop the domain knowledge necessary to
determine what task is the most important at any particular instant; rather, it gives the intelligent

agent in the system the tools with which to ensure those priorities are enforced).

Finally, a critical element of this thesis is real-time and, as discussed in Chapter 2, the guaranteed
ability to meet deadlines. The design effort must provide a method for the system to ensure real-time
performance as defined by the ability to guarantee deadlines. Additionally, it is important to remember that

execution speed is always an issue, even if not explicitly mentioned, in any design decision.

3.4. Possible Design Approaches

Drawing from the background research, two fundamentally different approaches for achieving the
goals of this thesis effort were envisioned. The first method is to modify an existing "reasoning process's”
data and control structures to allow for the addition of real-time programming constructs. The second
approach is to use standard Ada and design separate real-time data and control structures controllable by
the reasoning process. The work done by the Pilot's Associate Program as outlined in section 2.3.3 seems
to indicate that the first approach, modifying an existing reasoning process, would be the most appropriate.
After a long period of consideration, I opted to use the second approach. What follows is a brief
examination of the issues involved in both approaches and the reasons for the decision to not to attempt to

modify an existing reasoning process.

3.4.1. Modifying CLIPS/Ada Design Approach. In section 2.3.3, the approach to achieving real-time
performance in an intelligent system can be summed up by the term agenda management. The system must
determine what is the most important knowledge source, process, rule, or other computation to execute
next. Agenda management requires an agenda, and a method to prioritize items on the agenda. Thus for
my purposes, I needed a reasoning process that allows for basic agenda management and, because of my
third design assumption, is implemented in Ada. Additionally, since modifications to the source code of
the reasoning process are practically guaranteed, access to the source code and documentation is required.

CLIPS/Ada is the tool I found best suited to fill this role.

CLIPS/Ada is an Ada implementation of version 4.3 of NASA’s C Language Integrated Production
System. CLIPS/Ada provides a basic set of functions which can be used to achieve agenda management
and rule prioritization [CLIPS-Ada, 1991:20] [CLIPSRefMan, 1991a] [CLIPSRefMan, 1991b] [CLIPSUG.

35

1991]. Given these basic building blocks, it is easy to envision adding the modifications as outlined in
[Dodhiawala, 1988], [Lambert, 1990], and [Lambert, 1991} and discussed in section 2.3.3. In particular,
adding channels or multiple agenda queues, scheduling policies based upon completion deadlines, and

monitors to detect missed deadlines appears a straight-forward task.

CLIPS/Ada provides three basic parts to its rule structure as shown in Figure 3.1: the declaration
part, the conditional-element(s) (the asterisk indicates plurality is possible), and the action(s). The
conditional-element is traditionally referred to as the left-hand side of the rule and the action part is right-
hand side of the rule. The declaration defines properties of the rule, the conditional-element(s) defines the
conditions necessary for the rule to execute, and the action(s) defines what should occur when the rule

executes.

(defrule <rule-name> [<comment>]
[<declaration> ; Rule Properties
<conditional-element>* ; Left-Hand Side (LHS)
=>
<action>") ; Right-Hand Side (RHS)

Figure 3.1 CLIPS Rule Definition Structure [CLIPSRefMan, 1991a:27]

The only currently defined declarative characteristic available in CLIPS/Ada is the salience of the
rule. Salience is the priority of the rule and can either be assigned dynamically or statically. The salience
defines which rule on the agenda of active rules executes next and thus provides one feature required of an
intelligent real-time system. Additionally, because CLIPS/Ada allows the salience to be evaluated at every
cycle through the rule execution loop, it is easy to imagine the agenda management functions discussed in

section 2.3.3 being added with relative ease.

What is missing from the CLIPS/Ada system is the ability to determine and enforce the execution
time allotted to each rule's actions or of the CLIPS/Ada inference engine itself. Thus, once a rule is chosen
it is executed to completion, regardless of any changes in the environment. Additionally, the ability to
declare periodic rules or functions (periodic tasks are fundamental in real-time systems) is also missing,
although CLIPS version 5.1 is beginning to address this issue [CLIPSRefMan, 1991a:220). Thus, for my

36

purposes, I would be required to add the ability to declare and execute periodic tasks, ensure execution

deadlines, and interrupt or terminate executing rule actions.

One method of incorporating these abilities into CLIPS/Ada would be to expand the declarative part
of the rule structure to include additional characteristics necessary to ensure real-time performance. Figure
3.2 shows an example of such a modification to the CLIPS/Ada rule structure. Here added declarations of
rule-type, mandatory-duration, and optional-duration allow scheduling decisions to be made. Additionally,
the RHS actions are divided into mandatory and optional actions which can be executed as determined by

the current situation and scheduling policy.

(defrule <rule-name> [<comment>]
[<declaration> ; Rule Properties
<salience>
<rule-type>
<mandatory-duration>
<optional-duration>]
<conditional-element>* ; Left-Hand Side (LHS)
=>
<mandatory-action>* ; Right-Hand Side (RHS)
[<optional-action>*])

Figure 3.2 Modified CLIPS Rule Structure

Adding the ability to start, stop, and terminate executing rules is much more complex. First, it
implies multiple processes operating concurrently. Each rule therefore needs to be encapsulated in a form
that allows control of its execution time. Because my design assumes Ada is used and Ada concurrency is
expressed in Ada tasks, essentially, each rule needs to become a separate Ada task. This is a significant
change from the single thread of control CLIPS/Ada executes under now and a method to translate
CLIPS/Ada rules into Ada tasks is required.

These changes are possible to implement; however, the job of implementing them is staggering
[Sawyer, 1990]. First, the CLIPS/Ada source code contains over 130 files that total to more than 2.5MB of
source code. Second, the changes involve both syntactic and semantic modifications, implying changes
through out all the source code. Finally, this thesis effort is focusing on the design of an generalized
architecture capable of supporting IRTSs, and not restricted to only rule-based systems: thus. this approach

3-7

was deemed currently impractical. The modification of CLIPS/Ada to support real-time is left as future

research.

34.2. Controllable Real-Time Task Manager Approach. The second approach consists of using
standard Ada and designing a system that supports real-time constraints and is controllable by another
process called the Reasoning Process. The goal is not to modify the Reasoning Process itself, but rather to
treat it as a separate entity that controls a real-time system. The Reasoning Process must be able to control
what the current task set is, what the current scheduling policy is, and be able to change them as required.
What it is not required to do is the actual scheduling and execution control of each task in the currently
defined task set. This elevates the Reasoning Process to a “supervisory level”, acting as the central element
in the control reasoning of the system, and alleviated of the bookkeeping necessary to implement the

desired scheduling policy.

This approach requires a separate entity called the Task Manager that controls the instantiation,
scheduling, and execution of Ada tasks as directed by the Reasoning Process. Additionally, it provides
status information about the state of a task or the state of the system as a whole to the Reasoning Process.
The design process using this approach requires that a set of controllable parameters be devised that are
manipulated by the Reasoning Process and implemented by the Task Manager. The identification and

implementation of these controllable parameters is the heart of this thesis effort.

As implied above, the controllable parameters can be divided into groups based upon the function
they are performing: scheduling policies, control variables, status variables, and task controls. Example
scheduling policies are earliest deadline first, important task first, and shortest task first. Example control
variables are the percentage of CPU time to allocate for periodic tasks, or execute mandatory or optional
task parts flags. Example status variables include the actual number of tasks currently running or the
percentage of CPU time currently in use. Finally, task controls include task instantiation, task modification,
and task deletion. Note that creating a task is a different operation than scheduling a created task.

The concepts and methods developed using this second approach are also applicable to the first
approach. It is conceivable that the Task Manager can be incorporated directly into the Reasoning Process.
Alternatively, one can choose from the methods developed here to meet real-time constraints and only
incorporate those that seem to provide the most utility. Taking this second approach does not prevent

someone from taking the first approach and may actually be the necessary first step in the first approach.

The remainder of the chapter addresses the design decisions made to use the second approach and concisely
defines the design problem.

3.5. Design Problem Statement

A statement of the design problem now helps to define what this research is attempting to do. It is
important to remember that an underlying assumption of this thesis effort is the existence of a domain
specific problem solving structure (plan-goal graph or task network). Remembering that, and drawing upon
the information presented thus far in this thesis, the design problem can be stated as follows:

Given a graph structure (plan-goal graph or task network) that represents the system's operation, and
some currently active subset of that structure, dynamically generate and execute a processor schedule
to maximize system performance based upon a dynamically determined scheduling policy. Each
node in the graph represents a task to accomplish in response to some event from the environment or
needed operation to accomplish the system's mission, and each node represents either a periodically
performed task, single event response task, or a continually refined event response task (an any-time
task).

3.6. Key Design Decisions

From the background research performed, constraints upon development tools, and my own
intuition, a number of key design decisions are easily made. This section explicitly lists those decisions and
some of the reasons for each one. In short, those key design decisions call for small scale parallelism,
asynchronous operation, Ada tasks as the scheduling elements, dynamic Ada task instantiations, and a

single processor feasibility implementation.

All of the systems examined in the background research were implemented with between four and
eleven processors [Lambert, 1990] [Aldern, 1990] [Payton, 1991]. This relatively small number of
processors can generally be classified as small scale parallelism. The architecture developed in this thesis
effort should consider a partitioning of functions suitable for a small number of processors.

Asynchronous operation of the partitioned functions is also a conclusion drawn from the background
research. Each of the partitioned functions should operate at its own speed as dictated by the work it
performs. This approach allows for decoupling of the system components and corresponding performance

39

benefits. Additionally, events external to the system, generally asynchronous in origin, can be handled as
they occur.

A direct result of the design assumption of Ada as the implementing language is the use of Ada
tasks. Ada represents concurrency in the form of tasks and thus any system implemented in Ada, and
intended to execute concurrently, should use Ada tasks. This implementation language imposed constraint
must be addressed if task scheduling is to be performed in this system.

A decision resulting from my literature review is the requirement for dynamic Ada task creation and
control. From examination of knowledge engineering documents of the Pilot's Associate program. it is
clear that in any real system, there are a very large number of tasks the system can perform. Clearly, not all
of the tasks can be economically instantiated simultancously within the limits imposed by today's
processing systems. This forces me to the conclude that tasks must be created or instantiated dynamically

at run time.

Finally, the issue of a design feasibility demonstration must be addressed. Given the tools available
for this rescarch effort, and the limited time to develop a demonstration, a single processor feasibility
demonstration is the only viable alternative. Since, this thesis effort is the beginning in a series of related
efforts to develop and flush out an intelligent real-time system, I believe the most important issue to address
first is the feasibility of dynamic task creation and scheduling. For that reason, I have chosen to start first

with a single processor implementation, while maintaining concurrency in the design.

3.7. Design Approach Summary

This chapter has attempted to provide some of the design methodology and some design guidelines
used in developing this intelligent real-time system architecture. In summary, I have listed some
performance measures and some design concepts and methods to affect those performance measures.
Additionally, basic design assumptions and some key design decisions have been addressed. The following
chapters in this thesis develop an architecture based upon the design assumptions and decisions, and

examine the issues arising from that development effort.

3-10

IV. An Intelligent Real-Time System Architecture

Because the scope of this thesis investigation is so large, the research and development effort is not
completed within this thesis effort. The research area of intelligent real-time systems is diverse and
complicated, and this effort is beginning the process of examining the issues involved. Examination of the
issues is done by incrementally designing and implementing a system capable of performing the role of an
intelligent real-time system (IRTS) and addressing potential problems as they arise. Acknowledging the
broad subject area of this research, it is necessary to provide a larger vision of how such a system should be

constructed. The goal of this chapter is to provide that vision.

4.1. Top Level Design

The top-level intelligent real-time system conceptual architecture is shown in Figure 4.1. Briefly,
the Environment Model acts as the data repository, similar to a blackboard as discussed in section 2.3.3.
The 1/O Process is responsible for communications with the environment. The Reasoning Process is
responsible for determining the currently active set of tasks and the current scheduling policy to use in
scheduling that set of tasks. The Task Manager is responsible for implementing the scheduling policy and
notifying the Reasoning Process of the current status of the task set. Finally, the System Model represents
the system’s problem solving approaches in a form that can be used by the Reasoning Process in
determining the currently active task set. The top-level design includes all the basic components of an
intelligent real-time system as identified in Chapter 2. The Reasoning Process is filling the intelligent agent
role and uses the Environment Model, System Model, and status information provided by the Task
Manager to reason with. The Task Manager schedules tasks as directed by the Reasoning Process to

achieve real-time performance.

The architecture vision presented in Figure 4.1 attempts to maintain as much parallelism as possible
in the design. From the background research, it can be concluded that most IRTSs run on multiple
processors, usually loosely coupled or distributed. The recognition of that probable direction is shown by
separation of system functions. Each function is envisioned as a scparate Ada task. As mentioned
previously, in Ada, parallelism is represented in tasks. Additionally, the language provides a number of
features specifically designed to handle task scheduling and inter-task communications {Booch, 1983:231—

4-1

304] [Locke, 1992] [AdaLRM, 1983:Chapter 9] {Real-Time, 1984]. Methods other than using Ada tasks
are possible and should be examined, but for the purposes of this effort and the top-level design, Ada
tasking is a keystone.

The component most lacking in previous intelligent real-time systems is the Task Manager. For that
reason, it is the primary focus of the rest of this thesis effort. However, before discussing the design issues
of the Task Manager, the other components are briefly discussed. The discussion also contains suggested

approaches to implementing the components not yet implemented in this research effort.

Figure 4.1 Top Level Design Diagram

4.2. Environment Model

The development and implementation of the Environment Model is beyond the scope of this
particular thesis effort. However, its impact on the overall system design must be accounted for and
addressed in any feasibility demonstration. The Environment Model is perhaps the most domain specific
aspect of any IRTS. The Environment Model encapsulates all the data structures that are deemed relevant
to the system's ability to function intelligently in the environment. The exact method used to represent the

environment model is an open issue; however, this research plans to pursue an object oriented approach.

4-2

Along those lines, my investigations have centered around the use of Classic-Ada to implement an
object-oriented environment model [ClassicAda, 1989]. This package provides all the standard object
orientcd data and control structures. In addition, it allows object references to be passed by means of an
object ID value. This ability is highly desirable when passing information to the Task Manager for use in
controlling tasks. Essentially, a pointer task's data structure can be passed and stored as a single object ID.
Although shared memory structures are common practice in recal-time systems, there is a potential
communication bottleneck that can be created with this approach. Future efforts should examine this issue

closely.

Again, it is out of the scope of this thesis effort to fully implement an environmental model.
Identifying the relevant ideas (passing pointers to data structures by object ID and object oriented design
techniques) suffices to give the direction this is f)ursuing. Additionally, it provides general guidance on

where to begin in any follow-on thesis effort.

4.3. System Model

Development of a specific system model for a particular domain is not the purposc of this thesis. As
has been mentioned previously, this research is predicated upon the assumption that a Systc.» Model for the
chosen domain already exists. Thus for the purposes of this architecture, a method of representing that
model needs to be provided. The planned direction is to use a graph theory approach to represent the
System Model.

It is important to point out that the graph structure used to represent the system to the reasoning
process is not, in fact, the system. Instead, each node in the graph is a representation of some processing
required of the system as a whole. The actual code that represents each node in the System Model is

accessed and controlled by the Task Manager.

While the system is executing, there should conceptually be two system models present. The first
one is the sum total of all the possible nodes that the system can instantiate, and the second represents the
set of tasks currently instantiated by the system. The first model contains in each node, information on how
to instantiate that particular node and the real-time impacts of instantiating that node. The nodes in the
second network should contain the information actually used to instantiate that particular instance, and

information that allows the Reasoning Process to communicate with the instantiated task.

4-3

Simple graph functions should be able to accomplish the job of the System Model effectively. Thus,
the design must allow one to add or delete nodes in the graph, search the graph for a particular node, and
allow the reasoning process access to the data stored in that node. All of thesc are standard graph functions
available as Booch components [Booch, 1986]. In addition, reasoning about the temporal relationships
between tasks must be allowed for. Future research should pursue the use of temporal logic and temporal
constraint networks to achieve that ability [Wood, 1989] [Dechter, 1991].

44. 110 Process

The exact internal workings of the I/O Process is again implementation dependent. The important
issues to address are the fact that 1/O is required and the relative priority associated with I/O in general. For
example, reducing sampling rates on /O channels can be one method for the Reasoning Process to gain

some CPU ume. However, critical external signals must still be acknowledged and dealt with.

The concepts of periodic and non-periodic tasks with varying importances and execution prioritics
can be easily extended to include I/O processes. This implies that the Reasoning Process could treat the 1/O
Process as simply another task to be scheduled and executed by the Task Manager. The purpose of making
an explicit 1/O Process in the overall design is to emphasize the fact that communications with the world

external to the system is inherent in all intelligent real-time systeins.

4.5. Reasoning Process

Although the focus is on the architecture required for an intelligent real-time system, it is primarily
addressing the controls necessary and not the design of the intelligent agent that manipulates the controls.
It should not be taken as a given that the appropriate choice for an intelligent agent is always a rule based
expert system. Rather, the nature of the intelligent agent should be viewed as domain dependent. Possible
choices for an intelligent agent include straight procedural code designed for the particular domain. a rule
based expert system, or a neural network or connectionist approach. It is my belief that eventually, the

intelligent agent should incorporate all of these approaches.

However, this thesis effort is primarily addressing the Task Manager and some compromises have to
be made. For this reason, the Reasoning Process used is a rule-based system made up of CLIPS/Ada and
the appropriate interface code. CLIPS/Ada was available and provided the necessary functions with which

to prototype the system operation. In addition, both the source code and user manuals were available.

44

The basic approach is for the I/O Process to signal the occurrence of events in the environment by
asserting facts into the CLIPS fact base. CLIPS rules are then pattern matched against these facts and
actions taken as appropriate to guide the system into a desired state. Those actions can include directing the
Task Manager to create new tasks, modify current tasks, or remove current tasks. The Task Manager
responds to these actions and asserts new facts into the CLIPS fact base that describe the state of the
currently active task set. CLIPS rules are again pattern matched against these new facts and further actions
taken as appropriate to handle any problems. CLIPS is filling the role of a metaplanner for purposes of this
design.

4.6. Task Manager

The literature review and analysis of intelligent real-time systems conducted in Chapter 2 revealed
three broad categories of tasks the Task Manager needs to manage. These categories are periodic, singular,
and any-time. A periodic task arises from the necessity to either control some process or monitor for some
condition. Periodic tasks are fundamental to traditional real-time systems as exemplified by the large body
of knowledge covering real-time periodic task scheduling [Sprunt, 1989] [Sha, 1989] [Broger, 1989]
[Borger, 1989] [Sprunt, 1990] [Sha, 1991] [Lamont, 1991}). Examples that produce periodic tasks are
things like maintaining a flight path in the presence of strong winds, or monitoring a radar track to ensure it

does not become a threat, or screen updates to video displays.

Singular tasks and any-time tasks are both types of non-periodic tasks. Examples that produce
singular or any-time tasks are things like taking off in an autonomous aircraft, or responding to an obstacle
that blocks the path of a mobile robot. In the autonomous aircraft, taking off usually only happens once
during the life of the mission and once accomplished, that task can be forgotten and purged from the active
task list. The mobile robot may encounter many obstacles while negotiating a route or may not encounter
any at all. In either case, there are generally specific task starting times, execution sequences, and deadlines
that must be adhered to.

The difference between singular and any-time tasks lies in the underlying algorithm encapsulated by
the task. A singular task arises from the asynchronous nature of events occurring in the real-world, or one
time steps in a control process. An any-time task is similar to singular task, in that it arises from the same

conditions, however, its solution method differs significantly. A singular task has a specific starting time

4-5

and after some time interval provides an answer. An any-time task also has a specific starting time, but

provides answers of increasing accuracy (or quality) the longer the task is allowed to run.

Additionally, one of the premises stated for an intelligent real-time systcm is the ability to trade-off
solution quality and execution time. Thus, each task is assumed to have a mandatory and optional part.
This concept, as outlined in section 2.2, provides one method of performing the solution
quality/computation time trade-off and is adopted fully in this approach. The mandatory part of each task
ensures that, at least, some answer is provided by the intelligent real-time system by the task’s deadline.
The optional part of each task provides ways to increase solution quality, provided execution time is
allotted.

Finally, a method of mixing the task types together in one system needs some consideration. Real-
time systems generally cast both periodic and non-periodic tasks into the periodic framework [Sprunt,
1989] [Sprunt, 1990]. Using this approach, non-periodic tasks are given periodic time slices in which to
execute that zo unfilled if not needed. The approach taken in this research is a slightly different
methodology that allows the Reasoning Process to control the amount of CPU time allotted to periodic
tasks, called the “budgeted periodic utilization”. Non-periodic tasks are scheduled to execute in the

remaining CPU time.

The impact on task scheduling of these varying task types is enormous and is discussed in greater
detail in the following sections. However, the need to achieve real-time performance levies a common set
of constraints upon how each task type is dealt with. In particular, it is necessary to determine if a given
task set is feasible (i.e., can be scheduled to meet its deadlines) and then to schedule the task set. Also,
since it is assumed that there are infeasible task sets, an infeasible task set needs to be detected. and a

feasible sub-set of the tasks scheduled.

4.6.1. Periodic Task Scheduling. Periodic tasks have a period, a mandatory and optional duration,
and a dynamically assigned importance which represents the current relevance of the task. The distinction
between importance, and priority is necessary to emphasize. The priority of a periodic task is the value
assigned to the task by the scheduler to ensure the task’s execution characteristics. The task's importance is
a system wide value of the task’s relevance to the current problem. The problem for the periodic task
scheduler then is to assign an execution priority to a task, given the task's importance, a scheduling policy.
and the current state of the system.

46

The rate-monotonic theory plays a critical role in fulfilling the job required of the periodic task
scheduler. As discussed in section 2.1, the rate-monotonic algorithm provides a method of determining the
feasibility of a given task set and a corresponding priority assignment method for a feasible task set. By
keeping track of the durations and periods of the periodic tasks, it is simple to see if an additional task can
be accommodated with a guarantee of its ability to meet its deadline. Table 4.1 below is an example set of

periodic task that is used to illustrate some of the potential methods to schedule periodic tasks.

Table 4.1. Example Periodic Task Set

Task Desired Max Period | Mandatory Optional Total

Duration Duration

From Table 4.1, one can determine four possible periodic utilizations; (1) minimum mandatory
utilization, which is the absolute minimum periodic utilization that can be achieved, (2) maximum
mandatory utilization, (3) minimum optional utilization, and finally, (4) the maximum optional utilization,
which is the absolute maximum periodic utilization of the current task set. Figure 4.2 gives the relative

positions of the four values.

Note that there is no minimum period given for each task in Table 4.1. The desired period is

assumed to be the mnim'un period. It is inconsistent with real-time system design to propose periodic task

4.7

sets whose periods are not the minimum desired. This implies then that the periodic scheduler does not try
to maximize processor utilization simply because processing time may be available. Rather, the periodic
task scheduler tries to obtain the best solution quality (as a function of optional task portions scheduled and
executed) based upon available time.

Assuming the current set of periodic task consists of tasks 77 thru 77, the maximum utilization of the
example periodic task set is shown below. Note that the maximum utilization calculation uses the

minimum, or desired periods and both the mandatory and optional task durations.

g(m,-;oi)

= (my +0‘)+ (m, +02)+ et
P P D7

2 4 6 7 10 12 18
—— +—+ +

33 67 67 100 360 500 750

0.3673

Util,,

where m; and o; are the mandatory and optional durations of each task and p; is the period of each task in

the set. And similarly, the minimum utilization is calculated using the maximum periods and only the

mandatory part of the tasks.
Util, = Zﬂ
Di
=Dy, 4D
P P Py
~1l,1,2 .2 4 4.3
50 100 100 100 450 750 1000
= 0.0872

Equation 2.1 says that with 7 tasks, the utilization must be less than or equal to 0.728. However, in
our case we are restricting the CPU time allotted to periodic tasks to not exceed the current budgeted

periodic utilization. Thus Equation 2.1 must be adjusted to reflect this further restriction as follows:

1
Z("’ (m o) n[Z; -1]30 @.1)

where BU is the budgeted periodic utilization. Assuming the current budgeted periodic utilization is set at
0.51, we get a required utilization of 0.728 * 0.51 = 0.3712. Since the current maximum utilization is less

than 0.3712 we can guarantee that the deadlines of our periodic task set are meet.

4-8

Adding Tg to the task set raises th- utilization to 0.3696. Using (4.1) the required utilization with 8
tasks and a budgeted periodic utilization of 0.51 is 0.3693, and we can no longer guarantee the ability to
meet the deadlines for the task set. However, we can still guarantee the deadlines of the task set if only the
mandatory parts of each task are executed, or the budgeted periodic utilization is raised. It is the job of the
Task Manager to schedule the task set as best it can and notify the Reasoning Process of its current status.
It is up to the Reasoning Process to either step in and adjust the task set, or let the Task Manager schedule

the task set.

Min Max
Mandatory Mandatory

| 1.0
S S, K ———— el
Min Max

Optional Optional

Figure 4.2 Some Calculable Periodic Utilizations

Using the minimum utilization, the maximum utilization and a dynamically determined budgeted
utilization, the scheduler should initially schedule tasks using the rate monotonic algorithm with both the
mandatory and optional portions of each task. When the currently budgeted periodic utilization is
exceeded, then a scheduling policy decision must be made, and that decision is left to the Reasoning
Process. From the periodic scheduler’s point of view, it simply needs to detect a violation of the current

policy, and be able to implement a new scheduling policy.

Some intuitively obvious scheduling policies are (as mentioned above) scheduling both the
mandatory and optional task portions, or scheduling only the mandatory portions of tasks. Another task
scheduling policy that directly affects the system’s ability to degrade gracefully is importance-ordered
scheduling. In importance-ordered scheduling, periodic tasks with higher importance need to be scheduled
at a higher execution priority then tasks of lower importance. Note that this approach is directly addressing

the issues of focus-of-attention and control reasoning.

The policy of scheduling both the mandatory and optional task portions can be viewed as the
'normal’ case. Here the scheduler is trying to provide the best possible answer to every problem. When
computation time is in short supply, switching to mandatory-only task portions frees up the maximum
amount of processor time, at the cost of solution quality for all periodic tasks. When computation time is of

a minimum but solution quality is important, switching to an importance ordered schedule is desirable.

In summary, the periodic scheduler needs to assign execution priorities to a new task. based upon the
current scheduling policy. Thus, a scheduling step occurs whenever a new task is created. Additionally,
the periodic scheduler needs to provide the reasoning process with a variety of implementable scheduling
policies that achieve different goals. As mentioned above, these implementable scheduling policies should

include at least, mandatory only, optional and mandatory, and importance-ordered.

4.6.2. Non-Periodic Task Scheduling. Non-periodic tasks consist of a mandatory and optional
duration, a dynamically determined importance, a start time, a deadline, and possibly precedence
constraints. Additionally, non-periodic tasks can either be singular or any-time tasks. The job of the non-
periodic task scheduler then is to assign execution priorities to both singular and any-time tasks to ensure

tasks are completed on or before the task's deadline.

The concepts used here are primarily derived from the work done by Liu, et al, [Liu, 1991]. Thus, as
is the case with all tasks in this system, cach task is assumed to have a mandatory portion and an optional
portion. Again, as is the case with the periodic tasks, the job of scheduling non-periodic tasks can be
decomposed into determining the feasibility of scheduling a task set, and actually scheduling the tasks.

Before discussing the proposed scheduling methods, a word about the durations of the optional parts
of singular and any-time tasks is required. The optional duration of a singular task is a onc time chunk of
time that the task needs to compute a solution that is more accurate than its mandatory part. The optional
duration of an any-time task is the amount of time it takes to cycle once through the solution refinement
process. Thus when a singular task’s optional duration has elapsed. the task is completed. When an any-
time task’s optional duration has elapsed, it is simply placed back into the set of tasks ready to execute until

its deadline has passed or some other terminating condition met.

One is cautioned that the problem of optimally scheduling varying length tasks with precedence
constraints preemptively is an NP-complete problem [Coffman, 1976:Table 1.1]. A real-time system that

faces such a problem must make some simplifying assumptions, or place artificial constraints upon the

4-10

problem size. The approach taken in this thesis is to make some simplifying assumptions. Thus, optimal
solutions are not generated:; rather a working scheduling is found quickly. This approach means that the
Task Manager does the on-line scheduling of the non-periodic task set using the assigned importances,
deadlines, and start times while the Reasoning Process does the off-line scheduling to determine what the

task set, importances, deadlines, and start times should be.

The scheduling policy used is, basically earliest deadline first as enhanced for on-line scheduling by
Baruah, et al, [Baruah, 1991]. In addition, the carliest deadline first algorithm has been enhanced to deal
with the concept of mandatory and optional task parts. The algorithm assumes the existence of two priority
queues, one with tasks arranged with the earliest deadline first, and another arranged with the latest start
time first. The latest start time of a task is its deadline minus its mandatory duration if its mandatory part

has not completed, or its optional duration if it has.

When a new task arrives in the system, it is placed into the deadline and latest start time queues. The
scheduler removes the first task from the deadline queue and begins to execute it. If this is the first time
that task has been started, then it will be executing its mandatory part. When the task is completed. it is
removed from the latest start time queue, its latest start time for its optional part is calculated and the task is
reinserted into both the deadline and latest start time queue. As long as the system is not overloaded, the
latest start time of any task will never be exceeded. An overload situation is detected by the presence of a

task on the front of the latest start time queue whose latest start time is equal to the current time.

When an overload situation occurs, tasks are executed based both on the deadline of the task and its
importance. The choice of which task to execute must now be made. Assuming that the goal of the systcm
is to execute as many mandatory tasks as possible, then if the currently executing task is not executing its
mandatory part, and the task with a latest start time equal to the current time has not executed its mandatory
part, the currently executing task is preempted, and the other task is started. If both tasks are executing
their mandatory parts, then the currently executing task is checked to see if it has any slack time. If it docs.
then again it is preempted and the other task is started. If it does not. then the task with the highest

importance is allowed to execute and the other task misses its deadline.

Using the latest start time queue allows the scheduler to easily detect overload situations.

Organizing tasks with both a mandatory part and an optional part allows the solution quality/computation

4-11

time trade off to be made. Combining the two allows one to define multiple scheduling policies that can be

adapted to the current situation.

The “feasibility test” consists primarily of determining if every task in the task set can at least
complete its mandatory part by its deadline. Given the task’s mandatory duration, feasibility testing is
fairly straight-forward with one exception. That one exception deals with accounting for the periodic task

set's processor utilization. Figure 4.3 below illustrates the approach used to address this issue.

Projected LI— . - - ! H
Duration : : : | !
Mandatory q i | I i i
Duration” | H H | l !
| 1] 1] 1
Periodic !
Utilization .'_'I !_-' !—.l !_| ?_'I :
1 1 I 1 I]

L 1 1 [>

1 | I
§tLrt t 9 t 2 t 3 t 4 t 5
time

Figure 4.3 Predicting Non-Periodic Task Actual Durations

Since the periodic utilization is the percentage of the CPU time that is unavailable for non-periodic
tasks, each non-periodic task's predicted execution time must include some amount of time waiting for the
periodic tasks to complete. The approach taken is to simply divide the task’s mandatory or optional
durations by the processor utilization not used by the periodic tasks to predict the non-periodic task's actual
duration. Thus, the feasibility of a particular non-periodic task is determined by the equation:

1+ — < d, @2)

vit’l‘ (l_pu)

where:

T = set of non-periodic tasks

d; = deadline of task i

m; = mandatory duration of task

4-12

pu = current periodic utilization
tp = time now

This method does have some problems, namely that the periodic utilization is an average value and not a
accurate reflection of any one particular duration. System testing has to examine this issue to determine the

validity of this approach.

In summary, both the periodic and non-periodic schedulers need to determine the feasibility of a
given task set and assign execution priorities as directed by the current scheduling policy. Scheduling
policies implemented by the schedulers should include both policies for feasible task sets and importance
ordered scheduling for infeasible task sets.

4.7. Architecture Summary

The architecture as described in this chapter is a vision of how an intelligent real-time system should
be constructed. Research into some of the components has already been accomplished (as is the case of the
Reasoning Process by the Pilot's Associate program and outlined in Chapter 2). To add some validity to the
approach outlined in this chapter, a feasibility demonstration of the architecture is necessary, and in

particular, the functions of the Task Manager. This demonstration is described in the next chapter.

4-13

V. Feasibility Demonstration System

This chapter discusses in detail how the feasibility demonstration system is implemented. The
primary focus of the feasibility demonstration is on the development of the Task Manager. As mentioned
previously, the Task Manager is responsible for guaranteeing real-time performance of the system in
normal load conditions. In addition, it must respond appropriately to changing task importances and task
loads, and guarantee deadlines of a sub-set of tasks in overload situations. This chapter begins by
discussing some general implementation issues, then gives a brief description of how each of the other
architecture components is implemented. Following that, the data structures used in the Task Manager are
examined along with the transitions each task type can make. Finally, the procedures that make up the
Task Manager are reviewed.

5.1. General Implementation Issues

As with any demonstration effort, there are some implementation assumptions. In this effort, those
assumptions are as follows. First, the number of processes that are running at any one time is unknown,
This implies that the size of the problem is dynamic and should not be artificially constrained by some
maximum size limit. Dynamism at the implementation level usually means variable-sized data structures.
In this thesis effort, this translates to linked list structures, at cost of processing time and determinism.,
Arbitrarily deciding up front, the size of the problem would greatly increase the speed of the system,
essentially reducing a large number of O(n) linked list operations to O(1) array operations. Future work

should look at using predetermined data structure sizes and the performance issues associated with them.

Additionally, this thesis effort is unfunded and does not have primary access privileges to the
computer system the design is implemented upon. What that means is there are always tasks nnning in the
background, unknown to the Task Manager, that consume processor time. Thus, any testing of the Task
Manager's timing characteristics are subject to an unknown amount of error. The research has not
specifically addressed that issue in the scheduling algorithms used in this feasibility demonstration.
However, the impact of the additional, unknown processor loading is missed deadlines, and missed

deadlines are important events the system is designed to detect and handle.

5-1

5.1.1. Ada Compiler Choice. The choice of an Ada compiler plays a crucial role in this feasibility
demonstration. Since Ada tasking is a “big” part of the thesis effort, the compiler's support of tasking
primitives is an important issue. Chapters 3 and 4 expressed the need for dynamic priority assignments and
any Ada development environment used needed to support them. The feasibility demonstration uses the

Verdix Ada development environment over Meridian Ada for the following reasons.

First, Verdix Ada provides tasking primitives that allow direct control of the a task's priorities and
execution. Verdix provides the procedures Set_Priority, Suspend_Task, and Resume_Task [VERDIX,
1990]. In addition, Verdix's has implemented the Priority Inheritance Protocol in their Ada run-time
system. The Priority Inheritance Protocol prevents a major problem with Ada tasking known as priority
inversion [Broger, 1989]. It is important that these parts are identified here because they are compiler

specific and not readily transportable to other Ada development environments.

These specific procedures, Set_Priority, Suspend_Task, and Resume_Task all take the Verdix Ada
defined Task_ID as input. Each procedure also returns a value that specifies the result of that particular
operation. In the cases of Suspend_Task and Resume_Task, the returned values are used to determine
whether or not a periodic task has missed its deadline, or if a problem exists with a non-periodic task. Also,
the range of task priorities that are available with the Meridian compiler is 20, while the Verdix compiler

allows for 100 different priorities and thus a finer priority resolution.

Additionally, Verdix Ada is available on most of the computer systems at AFIT and should continue
to be in the future. Finally, both CLIPS/Ada and Classic Ada (an object-oriented Ada pre-processor I
planned to use in developing the Environment Model) successfully compile with the Verdix Ada but not
with the Meridian Ada compiler [ClassicAda, 1989]. The choice of Verdix Ada thus allows the inclusion
of existing tools, provides readily transportable code within AFIT, eases the task control problem, and
allows a greater range of task priorities. For these reasons, Verdix Ada was chosen as the Ada development

environment.

5.1.2. Memory Management Issues and Impacts. Another implementation issue to be addressed in
any real-time system is memory management. This means two things: first, ensuring that the memory does
not become fragmented and thereby forcing a garbage collection problem; and second, ensuring that
available memory is used efficiently. For these reasons, all the data structures used in this feasibility

demonstration employ their own memory management. This means that once an item of that type has been

allocated from system memory, it is retained and reused by the data structure as needed and never returned

to the system's heap space.

The issue of memory management has a profound affect upon how tasks are used, created, and
deleted, presenting a significant challenge in the development of this feasibility demonstration. The actual
work of the system is assumed to be performed by the periodic, singular, and any-time tasks (see Chapter
3). In Ada, any task object that is declared within the scope of another task only gives up its memory when
the task that declares it terminates [AdalLRM, 1983:9] [Cohen, 1986:699-708]. Additionaily, the language
specifically prevents a user-directed deallocation of the task’s memory space [Adal.RM, 1983:13.10.1.8].
Since the Task Manager is where all tasks are created and deleted, no task returns the memory it consumes
until the Task Manager terminates, and since the Task Manager never terminates, no memory from a task
object is ever returned to the system. Given that a substantial number of tasks may be created during the
execution of this Intelligent Real-Time system, this could lead to a significant 'memory leak'.

The term memory leak is a euphemism used by real-time system designers to describe a situation in
which a program’s memory is continnally consumed without ever being replenished. The analogy to a leak
in a water bucket is clear. In the case of the Task Manager, task objects never return the memory
consumed, the more task objects that are declared, the more memory has ‘leaked’ out of the system.

Eventually, the system consumes all available memory and no additional tasks can be accommodated.

5.1.3. Dynamic Task Creation and Control. To combat the memory leak problem, a method was
developed that allowed tasks to be reused. The tasks managed by the Task Manager are divided into three
types: periodic, singular, and any-time tasks. Each of the three task types has its own Ada task type
declared for it. Each Ada task type is encapsulated in its own Ada package along with a buffer used to
communicate with tasks of that type. Each of the Ada packages provides externally visible procedures that
allow an external task (i.e., the Task Manager) to store items into the buffer, create new tasks of that type,
and remove items from the buffer. The Ada package specification for each task type additionally exports
an access type for that task type and a variables record type used to pass information from the Task
Manager to a specific task or the buffer and vice versa. The method used to do dynamic task creation,
reuse, and scheduling is a fundamental accomplishment of this thesis research. Figure 5.1 illustrates the

concept and how it is implemented.

53

Each of the tasks P1, S1, A1, etc., shown in Figure 5.1, acts more as a wrapper or shell than a stand-
alone self-contained task. The task shell essentially provides the system with a reusable task that can be
directed to execute any of the procedures that are contained in that task type's package. As each task type is
declared or used, it is passed a parameter that specifies what procedure to use. The task type contains a
case statement for invoking the correct procedure based upon the passed parameter. Note that extending
this concept to include new or different task types, or additional procedures for a task type, is relatively

easy should it become necessary.

Task Manager Package

Singular Tasks Packag
Task Control Buffer

age

| LatestStartTime |

/_/ AdaTask

D Ada Package

Figure 5.1 Package Structure of Tasks

Each task also must provide at least two task entries called ‘Initialize’ and ‘Change_Variables' that
accept the variables record defined for that task type. The Initialize entry is used by the externally visible
procedure Create, to instantiate a new task and provide the Task Manager with information about that task.
In particular, the Create/Initialize pair provides the Task Manager with the Verdix Ada defined Task_ID,
and the execution times of the task. The Task_ID is needed to use the Set_Priority, Suspend_Task, and
Resume_Task procedures and the durations are needed to determine the scheduling of the task.

The Change_Variables task entry is used by the Task Manager to put a previously used task ‘shell’
into a new known initial state. It returns to the Task Manager the new durations of the procedure associated
with the task shell. Additionally, after either of these entries/procedures is called, the task suspends itself
using the Verdix Ada Suspend_Task procedure. Note that all task shells not currently in use are assumed to
be in a 'suspended’ state by the scheduler.

The reason for using the Suspend_Task procedure may not be obvious. Ada has a delay statement
that can be used to put a task to sleep until some specified duration has elapsed. The language standard
guarantees that the minimum time the task sleeps can be specified by the duration given to the delay
statement, but it does not specify the maximum amount of time the delay statement may consume. For
real-time systems, this is an unacceptable situation. Ensuring some exact period for a periodic task means
not relying upon the delay statement. Usually, a clock that generates an interrupt is used to ensure exact
durations. However, in this thesis, task execution and suspension is explicitly controlled using the Verdix
supplied Suspend_Task and Resume_Task procedures and a task dispatcher. The only place that a delay
statement is used to ensure task timings is in the task dispatcher. This was a deliberate decision to ensure

that the addition of an interrupt driven clock should be simple for any future work.

The existence of each of the Task Variables buffers provides the Task Manager an easy method to
control each task. When each task starts its execution cycle. it checks in its variables buffer for control
inputs from the Task Manager. The control inputs consist of a display flag, an execution mode, a procedure
identifier, and an Environment Model object identifier. Any-time task types also include a boolean variable
that tells the task whether or not it should continue executing, if it is executing its optional part. The
display flag is a debugging aid that tells the task shell whether or not to print out its execution statistics.
The execution mode is either mandatory or optional, and the procedure identifier and Environment Model
object identifier tell the task shell which procedure to execute and which piece of data in the Environment
Model to use.

5-5

5.14. Top Level Priority Assignments. The methods used to assign priorities to the different task
types is built upon a number of underlying assumptions, some previously stated, others not. Before we
begin the discussion of pricrity assignments though, the difference between priority and importance needs
reiterating. The priority of a task determines the execution order of the task and the importance of a task

has to do with its global relevance to the problem at hand.

The basic assumption that the system is at times overloaded which implies that at times the priority
of a task must be driven by its importance. Conversely, using the rate monotonic algorithm for periodic
tasks implies that when the system is not overloaded, for periodic tasks, importance is almost meaningless
to the schedulei. The problem faced in the implementation then is under what conditions and how should

different priority schemes be used, and what are some practical schemes to use.

Since the feasibility demonstration system is being implemented on a single processor system, the
priorities must also be used to simulate concurrency of the other architecture components. This causes
some problems when deciding upon the priorities to assign to the Reasoning Process, I/O Process,
Environment Model, System Model, and Task Manager. If the Reasoning Process is given a priority higher
than that of the periodic tasks, the assumptions used in the rate monotonic theory no longer hold. Since the
behavior of the Reasoning Process is not periodic, it would not be preempted by a periodic task. The result
is an inability to schedule periodic tasks to meet their deadlines. Additionally, any non-periodic task with a
priority higher than the periodic tasks would result in same problem. The I/O Process on the other hand

should execute at a relatively high priority to ensure rapid response to external events.

The compromise solution scttled upon is shown in Figure 5.2. Of the 100 task priorities available,
eighty are allotted for periodic tasks (89—10) and four are allotted for non-periodic tasks (9—6). The
remaining twenty priorities are used for the I/O Process, the Task Manager, emergency tasks, non-
schedulable periodic tasks, and discarded non-periodic tasks. A discarded task is one that is no longer
doing useful work because it has missed its deadline. The possible task states and their meanings are

discussed in detail later in this chapter.

The /O Process is assigned the highest priority (99) and the Task Manager the second highest (98).
Priorities (97-90) are reserved for emergency tasks. The allowance for emergency tasks gives the
Reasoning Process the ability to ensure that a specific task runs regardless of the current workload. The

Reasoning Process is assigned a static priority of five (5), to prevent it from interfering with the scheduling

and execution of both the periodic and non-periodic tasks. The impact of assigning the Reasoning Process
such a relatively low priority must be examined during testing. The Environment Model, System Model.
and Task Variables Buffer tasks are not assigned priorities since they basicrlly act as passive tasks, only
consuming CPU time when called. The implementation and use of priority inheritance protocols by the

Verdix Ada compiler ensures that these tasks do not block high priority tasks from executing.

Importance

Normal rder

1/O Process
-Task Manager

} Emergency Tasks

1 1

Periodic Scheduleable

TTkS Periodic Tilsk
Executing
Non-Periodic
Preempted

Non-Periodic

Reasoning Process

Non-Schedulable
Periodic Tasks

Discarded Tasks

Figure 5.2 Normal and Importance Ordered Priority Ranges

The Importance Ordered side in Figure 5.2 shows the result of overload (i.e., the existence of tasks
that can not be scheduled to guarantee completion by their deadlines) on the priorities assigned to the tasks
in the system. The effect of overload on task priorities is primarily restricted to periodic tasks. Periodic
tasks, whose importance is not high enough to put them in with the tasks scheduled rate monotonically, are

assigned the bottom priority in the system. They only execute when nothing else can. Note that it may

57

happen that there are not enough periodic tasks to use all of the periodic priorities. In this situation, those

priority values are not used.

Now that some of the general implementation issues have been addressed, the specifics of each
component’s implementation will be discussed. Figure 5.3 is used to faciliiate the discussion. Note,
however, that the focus of the feasibility demonstration is on the Task Manager and thus the other
components, with the exception of the Reasoning Process, are simply acting as place holders. Their
inclusion is simply to emphasize the requirement for their existence in a complete system and force the

feasibility demonstration system to address them, at least in a limited way.

5.2. System and Environment Model

As mentioned previously, both the System Model and Environment Model exist only as place
holders. Each cf these models are implemented as Ada tasks that are passive in nature, meaning they only
perform work when an entry call is made to them. These two IRTS components require significant
additional work to fully implement the architecture as outlined in this thesis. However, they are not the
primary focus of the feasibility demonstration and thus little effort was expended in developing them or

addressing issues in their implementation.

5.3. 1/0 Process

For the purposes of the feasibility demonstration, the I/O process simply sends intermittent event
messages to the Reasoning Process’s Event_Message entry. There is no significance to the messages.
They are simply used to simulate the arrival of I/O and generate an appropriate response by the Reasoning

Process. For demonstration purposes, this approach suffices.

S54. Reasoning Process Implementation

The Reasoning Process used in this feasibility demonstration is the expert system tool as
implemented by CLIPS/Ada. The purpose of this discussion is not to explain the inner workings of
CLIPS/Ada but rather the incorporation of it into the feasibility demonstration. Since the focus is not on

the use of an expert system shell, for a detailed description of CLIPS/Ada, refer to the CLIPS user's

5-8

manuals [CLIPS-Ada, 1991] [CLIPSRefMan, 1991a] [CLIPSRefMan, 1991b] [CLIPSRefMan, 1991c] and
[CLIPSUG, 1991].

The basic Ada Task structure of the Reasoning Process is shown in Figure 5.3. The Reasoning
Process Ada package consists of an Ada task to encapsulate the entire process and two CLIPS/Ada defined
packages, Embedded_CLIPS and User_Functions. Embedded_CLIPS is the CLIPS/Ada inference engine,
modified as the name implies to be embedded in other applications instead of being a standalone
application. The User_Functions package is a user-defined package that contains the interface between
CLIPS/Ada and any user-defined functions.

The user-defined functions developed and coded for this feasibility demonstration allow CLIPS/Ada
to add, modify, and remove tasks in addition to changing the budgeted periodic utilization. Each of these
functions is callable from either the right-hand-side or left-hand-side of rules defined in the CLIPS/Ada rule
format. Specific parameters needed to use these functions can be found in Appendix A and is not discussed

here. What is discussed are some problems that had to be overcome to write those user defined functions.

The first problem involved data types available in CLIPS/Ada and the conversion from external data
types to CLIPS/Ada data types. First, CLIPS/Ada explicitly defines what it uses for numbers as either
CLIPS_Reals or CLIPS_Integers. This forces the use of Ada explicit type conversions to communicate
numbers between CLIPS/Ada and external tasks. Second, a method of referring to a particular task needed
to be developed since CLIPS/Ada can not use the data type for Task Control Blocks. The approach taken
was to allow CLIPS/Ada to refer to tasks by their Task_ID using the Ada unchecked conversion procedure.
This approach required the Task Manager to search through the cumrently instantiated tasks to match a
Task_ID with a Task_Control_Block, potentially adding search time to any operation directed by the

Reasoning Process.

The Reasoning Process task that encapsulates CLIPS/Ada provides the interfaces between the other
IRTS components and CLIPS/Ada. Currently, those interfaces consist of 1) an entry to assert a fact into
CLIPS/Ada (supplied as a string), 2) an entry to receive Task Manager status updates from the Task
Manager, 3) an initialize entry to load the rules used by CLIPS/Ada, 4) an entry to signal when a task has
missed its deadline, 5) an entry used by the I/O Process to signal an external event, and 6) an entry to signal
that an infeasible task creation request has been made. The I/O Process event message entry is used by the
I/O Process to insert facts into CLIPS/Ada that stimulate CLIPS/Ada to add, remove, or modify tasks.

weiBel(] amonng e L epv SLYI '¢'s 9mByy

N

.

2gg SIQUIRA OUR L-

5-10

The Reasoning Process internal task structure is arranged similarly to the system outlined in section
2.3.3. Although not implemented in the feasibility demonstration, almost all of the agenda management
methods as discussed in section 2.3.3 could be easily implemented. The implementation as it stands now
first checks for any entry calls to the Reasoning Process and performs any that exist. Next, one rule is
allowed to fire and the cycle then repeats. Future efforts should look at fully implementing the agenda
management methods developed under the Pilot’s Associate program to improve and control the

performance of the Reasoning Process [Dodhiawala, 1988] [Lambert, 1991] [Lambert, 1990].

5.5. Task Manager Implementation Details

In this section the Task Manager is described in detail. The description begins with the data
structures used by the Task Manager. Next, periodic, singular, or any-time task state diagrams are
examined along with the events that trigger a transition from one state to another. Following that, the
assignment of periodic priorities is discussed. The Task Manager implementation discussion is concluded

with an explanation of each major procedure it contains.

55.1. Task Manager Data Structures. In order to understand how the Task Manager works, it is
important to outline its major data structures. The data structures consist primarily of priority deques
[Booch, 1986] and a record structure called a Task Control Block. A priority deque is a queue in which
items can be added or removed from either the front or the rear of the queue. In addition, the items in the
queue are arranged by some user defined ‘priority’. When a new item is added to the queue, it is placed in
priority order; a new item with the same priority as an existing item can either be placed in front of or
behind the existing item. This equal priority ordering choice allows one to implement either LIFO or FIFO
ordering for items of equal priority. All items of equal priority added to a queue are added in FIFO order
(i.e., behind items of equal priority).

There are six priority deques that are the most important data structures used in the Task Manager.

They are as follows:

. Ready Queue — A deque of tasks that are ready to execute but not yet scheduled, arranged so

that the task with the earlier start times are ahead of the tasks with later start times.

. Latest Start Time_Queue ~ A deque of singular and any-time tasks that are currently
executing, arranged such that tasks with earlier latest start times are ahead of tasks with later

latest start times.

. Deadline Queue — A deque of singular and any-time tasks that are currently executing,
arranged such that the tasks with the earlier deadlines are ahead of tasks with later deadlines.

. Tasks by Period — A deque of only periodic tasks that are arranged with tasks of shorter
periods ahead of tasks with longer periods.

. Periodic Importance_Queue — A deque of only periodic tasks, arranged so that tasks with a

higher importance (lower number) are ahead of tasks with lower importances.

. Task ID Queue — A deque of all tasks arranged by an integer representation of their Task ID.
This deque is used to find the task control block (described below) for a given Task ID.

There is one additional priority deque that is used for scheduling periodic tasks. It is a temporary
deque used when the system is overloaded. The algorithm for handling this situation involves searching
through each task in the Periodic_Importance_Queue and determining which tasks can be feasibly
scheduled. Those that can are added to the period-ordered temporary deque. Once all the important tasks
that can be scheduled are found, the temporary deque is used to assign them priorities.

A Task Control Block is an Ada variant record type that holds the information about each task that is
needed by the Task Manager. Figure 5.4 shows the Ada type declaration for the Task Control Block.
There are currently three variants of the record structure, one for each of the task types (periodic, singular,
and any-time). A variant record was used because each of the task types has different variables associated
with its scheduling and execution, but all the tasks have some common features. The common items
consist of the task's type, Task_ID, integer Task_ID, mandatory duration, optional duration, importance,

priority, starting time, latest starting time, time remaining, deadline, period and status.

The different task types do not use all the common parts of a TCB in the same way. Periodic tasks
use the deadline value as a stop time while non-periodic tasks have a period of zero. The variant part of a
Task_Control_Block contains a pointer to the task type it is controlling and another record structure that

holds the task specific variables needed by that task. Note in both cases these are data types exported by

5-12

the packaged specifications for the any-time, periodic, and singular tasks. With a basic understanding of
the data structures used, the task states can be discussed.

5.5.2. Task States and State Transitions. Although there are three types of tasks (periodic, any-time,
and singular), the scheduler handles the tasks as either periodic or non-periodic. All periodic tasks are
scheduled rate monotonically while non-periodic tasks are scheduled with a modified earliest deadline first
algorithm. This section describes the states each task type goes through and explain what events cause the
transition from one state to another. For this discussion, both the any-time and singular task types are under
the non-periodic task heading.

type Task Control Block Type (Kind : Task Kind Type := PERIODIC)
is record

Deadline : Calendar.Time ;
Importance : Integer ;

Latest_Start Time : Calendar.Time ;
Mandatory Duration : Duration ;

Next : Task_Control Block Ptr ;
Optional Duration : Duration ;

Period : Duration := 0.0 ;
Priority : System.Priority ;
Start_Time : Calendar.Time ;

Started At : Calendar.Time ;

Status : Status_Type ;

Task Kind : Global Data_Types. Task_Kind Type ;
Task_ID : System.Task_ID ;

Time Remaining : Duration ;
Integer_Task_ID : Integer ;

—-— A case is required for every kind of task that you wish
-- to be able to create.
case Kind is
when Global Data Types.Periodic =>
Periodic Variables : Periodic_Variables Type ;
The_Periodic_Task_Ptr : Periodic_Task _Ptr ;
when Global Data_Types.Any Time =>
Any Time Varlables : Any Time Variables_Type ;
The _Any Time _Task_Ptr : Any Time Task _Ptr ;
when Global Data_ Types.Singular =>
Singular Variables : Singular Variables Type ;
The_Singular_Task_Ptr : Singular Task_Ptr ;
end case ;
end record ;

Figure 5.4 Task Control Block Ada Record Type Declaration

5-13

552.1. Periodic Task State Transitions. A periodic task can be in one of four states,
READY, EXECUTING, SUSPENDED, or COMPLETED. A periodic task in the READY state is ready to
execute, but its start time has not yet been reached. An EXECUTING periodic task has passed its start time
and is currently executing. A SUSPENDED periodic task is an executing task that has completed its work
for that period and has called the Suspend_Task procedure. A COMPLETED periodic task has passed its
deadline or more correctly, its stop time, and is now available for reuse. Figure 5.5 shows each state and

labels the transition arcs from one state to another. The following discussion refers to Figure 5.5.

Event E1 occurs when a periodic task is added to the system and there are no available periodic task
‘shells’. This event causes the Task Manager to use the Ada “new” command to allocate a new TCB for a
periodic task. The task’s variables are sct and the task is inserted into the Task_ID_Queue, Ready_Queue,
Tasks_By_Period_Queue, and Periodic_Importance_Queue. The task’s status is then changed to READY.

Note that all periodic tasks not currently executing are in the suspended state.

Event E2 occurs when the task first makes it to the front of the Ready_Queue. When the task
reaches the front of the Ready_Queue and its start time equals the current time, it is started using the
Resume_Task procedure and its status changed to EXECUTING. Its next start time is calculated and the
task’s TCB is reinserted into the Ready_Queue. When the task completes its work for the current period, it
suspends itself (event E3) and is considered in the SUSPENDED state. When it again makes it to the head
of the Ready_Queue, it is resumed again (event E4). The cycle continues until either the task is explicitly
told to stop or its stop time has past, as signaled by event E5. It is during this cycle that periodic task
missed deadlines are detected and signaled to the Reasoning Process. Again, the Resume_Task procedure

detects when the resumed task was not suspended and generates an exception.

Once event ES has occurred, the task is placed on the free task list for periodic tasks. Note that it is
possible for a task to transition from the READY state to the COMPLETED state (event E5). This
transition occurs when the Task Manager is told to remove a task and the task has not yet started executing.
Also, since each task is in a known internal state when placed in the COMPLETED state, it can be reused
without any difficulty (event E6).

5-14

Figure 5.5 Periodic Task State Transition Diagram

55.2.2. Non-Periodic Task State Transitions. Non-periodic tasks have seven possible states
because the scheduling of non-periodic tasks is more difficult. The non-periodic task state transition
diagram is shown in Figure 5.6. In the figure, the gray lines represent the normal, non-overloaded, non-
periodic task state transitions. Event El occurs when there are no any-time or singular task ‘shells’
available and one is needed. Once the new task has been allocated, its variables are set, its status changed
to READY, and it is placed in both the Ready_Queue and the Task_ID_Queue. Note that a READY non-
periodic task is not in the Latest_Start_ Time_Queue or the Deadline_Queue.

From the READY state, there are two possible transitions, event E2 and event E6. Both events occur
when the task reaches the head of the Ready_Queue. If the task has a deadline that is earlier than the
currently executing non-periodic task, then the task is placed in the EXECUTING_MANDATORY state
and is given the highest non-periodic priority (event E2). Additionally, what was the currently executing
task is preempted and depending on its state, it is either placed in the PREEMPTED_MANDATORY
(event E8) or PREEMPTED_OPTIONAL state (event E10). In addition, the preempted task’s remaining
computation time and latest start time are calculated, and the task is inserted in both the

Latest_Start_Time_Queue and the Deadline_Queue. If the task coming from the Ready_Queue does not

have the earliest deadline (i.c., is not at the head of the Deadline_Queue), then its state is changed to
PREEMPTED_MANDATORY, its time remaining and latest start time are calculated, and it is inserted in
both the Latest_Start_Time_Queue and the Deadline_Queue (event E6).

El B
Ready
E6

E9
mpted Preempted
Mand atory Dlscarded

O

Executmg Executmg
Mandatory Optlonal

14

Figure 5.6 Non-Periodic Task State Transition Diagram

Note that an EXECUTING_MANDATORY or EXECUTING_OPTIONAL task is not in either the
Latest_Start_Time_Queue or the Deadline_Queue. The reason is that in the normal case, the task has been
scheduled to execute because it has the earliest deadline and, therefore, it is assumed it executes to
completion. If it could not have completed before its deadline (i.e., its remaining computation time was
more than the time remaining until its deadline) then a missed deadline would have been signaled for the
task and the task’s state changed to DISCARDED (event E9).

A task that is in the EXECUTING_MANDATORY state can either be preempted (event E8), or
complete its mandatory part and be scheduled to execute its optional part (event E3), or be DISCARDED
(event E9). Event E8 occurs either in the case outlined above where a newly “eligible to execute” task has

an earlier deadline, or the latest start time for a task has occurred and the EXECUTING_MANDATORY

5-16

task either has slack time (i.e., its execution time remaining is less than the time remaining until its
deadline) or the task at the head of the Latest_Start_Time_Queue has not completed its mandatory part (i.c.,
is in the PREEMPTED_MANDATORY state) and has a higher importance value than the current
EXECUTING_MANDATORY task.

If the preempted task is in the EXECUTING_MANDATORY state, and does not have any slack
time, then it misses its deadline (event E9). In this case, the task is placed in the DISCARDED state and its
priority set to the lowest available. Note that the task cannot immediately be placed back into the frec list
because it is not in a known state. It must be allowed to finish its current work, but not alter either the state
of shared data before it can be placed in the COMPLETED state (event E13) and in the free task list. Thus,
in addition to changing its state, the preempted task's continue flag is also set to false.

If a preempted task is in the EXECUTING_OPTIONAL state, and the task does not have any slack
time, then the task will miss its optional part deadline (event E9). This condition is different then missing
the deadline for its mandatory part in that there is still an answer available, only the quality of the answer is
affected. Thus, this case is not signaled to the Reasoning Process as a missed deadline. Note, however,
that the task is still discarded and only marked as COMPLETED when it signals completion (event E13).

When a task that completes its mandatory part, either while in the PREEMPTED_MANDATORY or
EXECUTING_MANDATORY state, new values for both its latest start time and computation time
remaining is calculated. Next, the task's TCB is placed in both the Latest_Start Time_Queue and the
Deadline_Queue, and the task's state changed to PREEMPTED_OPTIONAL (event E10). If the task is at
the head of the Deadline_Queue then its state will be changed to EXECUTING_OPTIONAL and it will

begin executing its optional part (event E12).

The values used in the calculation of the remaining computation time and the latest start time depend
upon which state the task is transitioning from. When a task transitions from the READY state to either the
EXECUTING_MANDATORY or PREEMPTED_MANDATORY states (events E2 or E6), the value of
the task's mandatory duration is used to determine its latest start time and the initial value of the
computation time remaining. When the task transitions from either the EXECUTING_MANDATORY or
PREEMPTED_MANDATORY state to the PREEMPTED_OPTIONAL state (event E10), the task's

optional duration is used.

The effect of a task completing its optional part depends upon the type of task. A singular task that
completes its optional part from either the EXECUTING_OPTIONAL or PREEMPTED_OPTIONAL state
(event E4), is placed in the free task list and its state changed to COMPLETED (because it is possible for a
task in the EXECUTING_OPTIONAL state to block for some extemal process, it is possible for a
PREEMPTED_OPTIONAL to execute and complete). Note that the task itself will call the Suspend_Task
procedure after it signals it is complete. When an any-time task completes its optional part, if there is
enough time to complete another complete cycle through an optional part, its computation time and latest
start time are adjusted and the task’s TCB is reinserted into the Latest_Start_Time_Queue (event E14).

This process is repeated until the any-time task’s deadline arrives.

5.5.3. Periodic Task Priority Assignments. A number of different methods of assigning periodic
priorities were investigated during the development of the feasibility demonstration. The investigation
focused the problem of assigning priorities when there are more tasks than priorities. Appendix B contains
a description of the various methods developed and the results of testing each method. Note that when
there are fewer tasks than periodic priorities, it is a simple matter to cycle through the

Tasks_By_Period_Queue to assign priorities.

The investigation concluded that for the feasibility demonstration system, the problem would be
solved by simply dividing the number of periodic tasks by the number of periodic priorities. The result of
that division is then used as the number of tasks to assign to each priority. Again the
Tasks_By_Period_Queue is cycled through, this time assigning the appropriate number of tasks the same

priority before moving on to the next priority.

5.5.4. Task Manager Entry Call Descriptions. The Task Manager is implemented as an Ada task
with five entry calls. The entry calls are Add_Task, Modify_Task, Remove_Task,
Change_Periodic_Utilization, and Task_Complete. The task entries Add_Task, Modify_Task,
Remove_Task, and Change_Periodic_Utilization are used by the Reasoning Process to control the current
task set. The Task_Complete entry is used by the any-time and singular tasks 1o signal the Task Manager
that they have completed executing. In addition, the Ada task is set up with a delay statement that
essentially places the Task Manager in an idle state when it is not in use. The following sections describe
the processing that takes place whenever a call is made to any of the task entries and explains how the Ada

select statement with a delay alternative is used in the Task Manager.

5-18

5.54.1. Add Task Entry Call. Task creation is done in response to a request from the
Reasoning Process to instantiate a new task. The process varies depending upon the type of task that
requires creation, but the basic process is: getting a Task Control Block, filling in the appropriate values,
determining the feasibility of the task, adding the new task to the appropriate priority queue, scheduling the
task, and finally sending the control variables to the task's control buffer.

Getting a new Task Control Block (TCB) is accomplished by the procedure Get_TCB. Because the
system reuses task shells it first checks the free task list to see if there are any tasks of the required type
available for use. If there are, then the TCB for an unused task shell is modified to reflect the new
parameters as passed to the Task Manager. Since task starting and stopping is explicitly controlled by the
Task Manager, any task not currently in use (i.e., stored in the free task list) is in the suspended state.
Therefore, the Resume_Task procedure is called and a call to the task's Change_Variables entry is made.
The call to the task's Change_Variables entry returns to the Task_Manager the task's durations and the
values are stored in the task's TCB. If there are no task shells of the right type available on the free task
list, then a new task of the appropriate type is instantiated and a similar call to the Change_Variables entry
is made. Note the task itself has again been placed in the suspended state after it responds to the

Change_Variables entry call.

Once the task’s durations are returned to the Task Manager, a call to test the feasibility of the new
task is made. The feasibility check for a periodic task consists of determining if the task’s period is greater
than the task’s combined mandatory and optional durations and if at least its mandatory part can be
executed without exceeding the current budgeted periodic utilization. The feasibility check for a non-
periodic task consists of determining whether the task can complete its mandatory part before its deadline.
If the task is feasible, then it is placed into the Ready_Queue and the Reasoning Process is notified of the

new status of the task set.

Deciding what to do with a new task that is infeasible is an area where future work is required. The
chosen method is to make a distinction between periodic and non-periodic tasks. If a periodic task is
infeasible (i.e., the task set, which includes the new task, utilization exceeds the amount available), it is
added to the Ready_Queue anyway. The assumption is that at some future time there may be enough
processor time available to execute the task. Non-periodic infeasible tasks are simply removed from the
system altogether. The assumption made here is that the deadline is going to be missed. so the Reasoning

Process has to adjust its request.

5-19

If the new task is a periodic task, then the parameters used for assigning periodic priorities are

updated. In particular, if there are more periodic tasks than periodic priorities, then the ranges of periods

assigned to each priority is updated. If not, then there is no need to perform this operation and some time is

saved by not doing it. The periodic task's TCB is then added to the Ready_Queue, Task_By_Period, and

the Periodic_Importance_Queue. If the new task is not periodic, then the number of active non-periodic
tasks is incremented by one and the task's TCB is added to the Ready_Queue.

New periodic tasks are also assigned an execution priority when they are added to the system. In

addition, periodic tasks are assigned a new execution priority whenever a periodic task is modified.

removed, or the budgeted periodic utilization is changed. The steps in assigning periodic prioritics are as

follows:

1y

2)

3

If the current periodic utilization is below the utilization required for running all tasks with
their optional parts, then instruct each task to execute both its mandatory and optional parts.

Assign each task's priority rate monotonically. This condition is called ALL_OPTIONAL

in the program.

If the current periodic utilization is above the utilization required for running all tasks with
their optional parts, but below that required for all tasks to execute only their mandatory
parts, then assign all tasks to execute their mandatory parts and assign each task's priority
rate monotonically. Then loop through the Periodic_Importance_Queue adding optional
parts until the utilization equals the required utilization. This condition is known as

SOME_OPTIONAL in the program.

If the current periodic utilization is above the utilization required for running all tasks with
their mandatory parts, then loop through the PERIODIC_IMPORTANCE_QUEUE adding
mandatory parts until the utilization equals the required utilization. Then assign this subset
of tasks to execute their mandatory parts and assign each task's priority rate monotonically.
This condition is known as SOME_MANDATORY in the program.

55.42. Modify Task Entry Call. A task can only be modified in a limited number of ways.

Only the task’s period, importance, start-time, deadline, or display flag can be changed and only when the

task is in a certain state. Changing the task’s procedure identifier is treated as adding another task and is

not allowed as an external modifying option by the current implementation. With the exception of

5-20

changing the display flag, all the changes may involve rescheduling most of the tasks in the system. Table
5.1 and Table 5.2 show the allowed modify operations for each task type and the potential effects of that
modification. However, the first operation is always finding the task’s TCB in the Task_ID_Queue.

Table 5.1 Effects of Modifying Tasks and Periodic Utilization

Changed Item Task Variables Reschedule Reschedule Non-
Buffer Periodics Periodics
Display Flag)

Deadline v v
Importance ¥))
Period v v v
Start Time v v
Periodic Utilization v v v

Modifying a periodic task’s period or importance can have time-expensive consequences. It is
possible for the modification to require communicating a significant number of changes to the pericdic
task’s variables buffer. For example, changing a task’s period enough to change the periodic condition
from ALL_OPTIONAL to SOME_MANDATORY will require each periodic task’s variables to be
changed. Additionally, since the Display Flag is specific to each task, and changes must be signaled to

each task, it also requires the task’s variables record stored in the task’s variables record buffer be changed.

Modifying a non-periodic task is not quite as expensive. The worst case occurs whenever the task
that is modified has started its execution. In this case, the task is modified and then a reevaluation of which
task to execute is made. This reevaluation is made by checking both the Latest_Start_Time_Queue and the
Deadline_Queue and executing the appropriate task.

5-21

Table 5.2 Allowed Modify Operations by Task Type and State

Allowed to Modify

Actions Taken

PERIODIC PERIOD Recalculate the Utilizations
Adjust the Tasks by Period Queue
Reassign the Periodic Priorities
START_TIME Adjust the Start Time Ordered Queue
DEADLINE No Action Required
IMPORTANCE Adjust the Importance Ordered Queue
EXECUTING PERIOD Recalculate the Utilizations
Adjust the Tasks by Period Queue
Reassign the Periodic Prioritics
DEADLINE No Action Required
IMPORTANCE Adjust the Importance Ordered Queue
Recalculate the Utilizations
Reassign the Periodic Prionties
COMPLETED NONE Error Condition
ANY-TIME READY DEADLINE No Action Required
SINGULAR
IMPORTANCE No Action Required
START_TIME Adjust the Start Time Ordered Queue
EXECUTING_MAN DEADLINE Stop Current Task
IMPORTANCE Place in LST and Deadline Queues
EXECUTING_OPT DEADLINE Pick new Current Task
IMPORTANCE
PREEMPTED_MAN DEADLINE
IMPORTANCE
PREEMPTED_OPT DEADLINE
IMPORTANCE
DISCARDED None Error Condition
COMPLETED None Error Condition

5.5.4.3. Remove Task Entry Call. The actions taken when a task is removed depend upon the

task type and the task’s current state. In any case, however, the Task_ID_Queue must first be searched to

locate the task’s TCB. For a periodic task, the removal process is as follows:

1)

2)

3)

4)

Remove the task from the Tasks_by_Period, Periodic_Importance_Queue, and Ready_Queue.

Adjust the values of the mandatory utilization, optional utilization, and required utilization

based upon the task’s current execution mode.

Change the task’s state to COMPLETED and place the TCB on the free task list.

Reschedule the remaining periodic and non-periodic tasks.

Note that there is no communication with the periodic task itself. This is possible because each task

suspends itself after it has performed its work and, in the worst case, the task terminates after the current

execution cycle it is performing. Allowing the periodic task to complete its cycle also ensures that the task,

and the data it is manipulating are in known states.

Removing a non-periodic task is only slightly more complicated, mainly because direct

communication with the task may be necessary. The procedure is as follows:

D

2)

If the task’s state is READY, then it has not started executing yet, so:

a) Remove the task from the Ready_Queue.

b) Change the task’s state to COMPLETED and place the TCB on the free task list.

If the task’s state is EXECUTING_MANDATORY, EXECUTING_OPTIONAL,
PREEMPTED_OPTIONAL, or PREEMPTED_MANDATORY, then it has started executing,

SO:

a) If the task’s state is PREEMPTED_MANDATORY or PREEMPTED_OPTIONAL., then

remove the task from the Deadline_Quecue and Latest_Start_Time_Queue. Otherwise, the

task is not in either queue.

b) Change the task’s continue flag to FALSE and send the new value to the task’s variables
buffer. Also change the task’s state to DISCARDED.

c) If the task’s state was EXECUTING_MANDATORY or EXECUTING_OPTIONAL, then
make the task at the head of the Deadline_Queue the currently executing task.

5.5.4.4. Change Periodic Utilization Entry Call. Because the budgeted periodic utilization
value is used to schedule both periodic and non-periodic tasks, changing the budgeted periodic utilization
can be the most expensive entry call. Whenever the budgeted periodic utilization is changed, all periodic
tasks priorities are reassigned. This may require communicating execution mode changes to a large number

of periodic tasks.

Non-periodic tasks use the budgeted periodic utilization when calculating their execution times.
Once the new budgeted periodic utilization is set, the latest start time and time remaining for every non-
periodic task is recalculated. However, since the effect is the same on all non-periodic tasks (i.e., they are

each changed by the same factor) the current scheduling method is continued.

5.54.5. Task Complete Entry Call. The Task_Complete entry call is used by the non-
periodic tasks to signal the Task Manager that they have completed execution of their assigned part
(mandatory or optional). Again, the effect of the entry call depends upon the status of the task that calls the
entry. The effect of the call for the different task state’s are as follows:

1) If the calling task’s state is DISCARDED, then the task’s TCB is placed on the free task list and

no other action is required.

2) If the calling task’s state is EXECUTING_MANDATORY or PREEMPTED_MANDATORY,
then the task’s latest start time and time remaining is recalculated using the task’s optional
duration and the task is reinserted into the Latest_Start_Time_Queue and Deadline_Queue. The
task’s state is changed to PREEMPTED_OPTIONAL. If the task’s state was
EXECUTING_MANDATORY then a new non-periodic task is executed.

3) If the calling task’s state is EXECUTING_OPTIONAL or PREEMPTED_OPTIONAL and the
task is a singular task, then the task’s state is changed to COMPLETED and its TCB is placed

5-24

on the free task list. If the task’s state was EXECUTING_OPTIONAL, then a new non-periodic
task is executed.

5.5.4.6. Task Dispatcher. The goal of the Task Dispatcher is to implement the schedule. It
does this by starting tasks from the Ready_Queue. Tasks are started using the Resume_Task procedure.
Additionally, the dispatcher will delay the Task Manager until the next scheduled action is to occur. This
delay statement ensures that other tasks are given processor time if needed. The dispatcher removes tasks

from the Ready_Queue and operates on them as follows:

1) If the task is a periodic task then:

a) If its stop time has not been exceeded, the task is resumed, its next start time calculated, and
it is placed back on the Ready_Queue.

b) If its stop time has been exceeded, the task’s status is changed to COMPLETED and the
task’s TCB is placed on the free task list.

2) If the task is non-periodic then:

a) If there is no currently executing task, set the task’s status to

EXECUTING_MANDATORY and resume the task.

b) If there is a cumrently executing task, and the new task’s deadline is before the currently
executing task’s, preempt the currently executing task, set the new task’s state to

EXECUTING_MANDATORY and resume the new task.

c) If there is a currently executing task, and the new task’s deadline is after the currently
executing task’s, calculate the new task’s latest start time and time remaining, place the task
in the Latest_Start_Time_Queue and Deadline_Queue, and change the new task's state to
PREEMPTED_MANDATORY.

Once all the tasks in the Ready_Queue that need to be started have been started, the time until the
next scheduling event is calculated. This time is the lesser of the first time in the
Latest_Start_Time_Queue, Deadline_Queue, or Ready_Queue. The delay is then used to ‘slecp’ the Task
Manager until that delay expires or an entry call to the Task Manager is made.

5-25

5.6. Implementation Summary

This chapter has spelled out the important details of the feasibility demonstration system. It has
discussed the compiler choice, memory management issues, task states, priority assignments, and
scheduling. The implementation handles both periodic and non-periodic tasks, detects missed deadlines
and overload situations, and responds to those conditions as required. In addition, it provides for the
dynamic creation and control of Ada tasks. These mechanisms provide “hooks™ needed by the Reasoning
Process to specify the current task set and influence its run-time scheduling. These capabilities are crucial

to managing dynamic, real-time, periodic and non-periodic task scheduling.

The following chapter presents the results of testing done to confirm the operation of the developed
system and thus, the feasibility of the developed architecture. The code developed for the demonstration

system is included in Appendix A.

5-26

VI. Results and Analysis

Since accurate timing analysis is both impractical and unwarranted at this stage (because the design
is implemented upon a multi-user UNIX platform), the approach used to demonstrate feasibility is more an
existence proof of desired capability. In particular, the architecture includes, and this investigation is
focused on, a Task Manager that dynamically creates, schedules, and executes the real-time tasks of an
IRTS. Additionally, the architecture specifies that the Task Manager receives commands from the
Reasoning Process dictating which tasks are to be created, modified, or removed. In addition, the Task
Manager accepts some control inputs about how they should be scheduled. The following sections discuss
the results of capability tests beginning with an assessment of the overall architecture feasibility. Next, the
system’s ability to dynamically create and control Ada tasks is addressed. Finally, the particular scheduling

policies discussed in previous chapters are examined.

6.1. Architecture Feasibility

The question to be addressed is, “Does the feasibility demonstration lend one to believe that the
architecture as outlined in Chapter 4 is viable?” The answer, from testing of the system’s performance to
date is, “yes, with some modifications”. In particular, tests indicate that the current CLIPS/Ada based
Reasoning Process executes too slowly. The reasons for the inadequate performance of the Reasoning
Process have not been fully explored, primarily because the majority of the effort was in developing the
Task Manager component of the architecture.

Figure 6.1 and Figure 6.2 show examples of the Task Manager overhead incurred by periodic and
non-periodic tasks of different durations. The graphs assume each task uses an existing task shell when
added, is modified once, and then removed. Figure 6.1 assumes an add task operation takes 0.004 seconds,
a modify operation takes 0.001 seconds, and a remove operation takes 0.001 seconds. Similarly, Figure 6.2
assumes an add task operation takes 0.004 seconds, a modify operation takes 0.003 seconds, and a remove
operation takes 0.001 seconds. The times are derived from testing results contained in Appendix A.
Assuming a desired maximum overhead of 10%, the results indicate the approach is feasible for systems

whose task durations are about 0.07 seconds or greater. However, two observations are in order.

6-1

e L 9o
2 0 o

' .8 1 1 0 1 ¢

Percentage of Overhead
o
w

LA 1 1

l

0.2
0.1 \
1 \
ol =
0 01 02 03 04 05 06 07 08 09 1
Task Duration (Seconds)
Figure 6.1 Example Periodic Task Manager Overhead versus Task Duration
0.8 -
o 0.7
IR
§ 1
5 0.5
60.4]
S .
£ 0.3
o .
O 0.2
o : \
a]
0.1 d
% B
0 01 02 03 04 05 06 0.7 08 09 1

Task Duration (Seconds)

Figure 6.2 Example Non-Periodic Task Manager Overhead versus Task Duration

6-2

First, because the feasibility demonstration is currently executing on a single processor machine, and

there are numerous higher priority tasks executing at any one time (the Reasoning Process priority is 5,
periodic priorities start at 10 and go to 90), the reasoning process, as implemented, does not receive
adequate processor time. Two conclusions can be drawn. One is the need for at least one additional
processor in the system, and the other is a different priority for the Reasoning Process. Raising the priority
of the Reasoning process in the current implementation is not a practical solution because the execution
time of the Reasoning Process is unpredictable. This means task deadlines could not be guaranteed if the
tasks had priorities below the Reasoning Process’s. The better solution is a separate processor for the
Reasoning Process. Most IRTSs examined in the background research required multiple processors and

this feasibility demonstration has simply reiterated that requirement.

Second, because of the execution speed difference between the Reasoning Process and the Task
Manager, a “message buffer” should be used whenever the Task Manager communicates with the
Reasoning Process. As implemented currently, whenever the Task Manager wishes to communicate
information to the Reasoning Process, it makes an entry call directly to the Reasoning Process. If the
Reasoning Process is not ready to accept the entry call, the Task Manager will block. The inclusion of the
buffer would allow the Task Manager to complete its control actions independent of the Reasoning Process.

In addition, the Reasoning process could exert more control over its I/O.

6.2. Dynamic Task Creation and Control

A major accomplishment of this thesis is the development of an ability to dynamically create and
control Ada tasks. One of the fundamental assumptions of this thesis is the existence of a plan/goal graph
or task network for the chosen domain. The mapping of that problem domain structure into a solution
requires the ability to dynamically create and control real-time tasks. The results of testing the feasibility

demonstration indicate that the methods outlined in Chapter 5 for just that purpose are feasible.

Figure 6.3 and Figure 6.4 summarize the testing results contained in Appendix A. Each graph shows
the minimum time required to: 1) adding a task that requires instantiating a new task shell, 2) adding a task
that reuses a task shell, 3) modifying a task, and 4) removing a task. The effect of UNIX multiprocessing
operating system is evident in the fluctuating minimum times. The graphs indicate the design approach is
feasible for applications whose real-time response requirements are on the order of milliseconds. However,

testing indicated a potential problem area.

0.02

0.018 = Add (New)
0.016 weene Add (Reuse)

__0.014 anann Modiy
8 0012 —— Femove

0.01
@ 0.008

F 0.006 3
0.004 LA ‘LA‘W VAR
0.002 - . , &
] gjﬁ&if?”ﬁ? K

0 T 71 1 llllﬁﬁl LA LI)

0 20 40 60 80 100
Number of Active Periodic Tasks

120

Figure 6.3 Summary of Periodic Task Control Times

0.012

l
= Add (New)

0.01 7 Add (Reuse)

] | e Modity
g0.00B-. —— Remove

§ 0.006 - ¥ |

0.004 MW ¥

0.002- = |)
- AR N LN R RS
0 - Ll L B N ¥ ¥ L] L L I L] L | L} L J L § L | L] Ll L |
0 20 40 60 80 100 120
Number of Active Non-Periodic Tasks

Time (

Figure 6.4 Summary of Non-Periodic Task Control Times

64

6.2.1. Dynamic Task Creation Results. Test results show the time required to add and schedule
either a periodic or non-periodic task is around 0.004 seconds. Graphs of the results are included in
Appendix A. The results can be interpreted to mean that the minimum response time for the feasibility
demonstration is 0.004 seconds. The time to add a task is not the same for reusing a task or instantiating a

ncw one.

The varying times to add a new task to the system is a problem. Testing results indicate that the
average time to add a task that reuses a task shell differs from the time to instantiate a new task shell by
about 0.004 seconds. The results were obtained by making numerous runs which create all new tasks, and
reuse tasks and averaging together the fastest ten times from each run. The key here is not the exact times
(as mentioned previously, exact timing numbers are subject to uncontrolled error), but rather the variance

between the two sets of times.

The reason for the variance is the extra overhead required to instantiate a new task, however, no
provisions have been made in the implementation to address it. What this means is that the Reasoning
Process does not currently have a method to determine how long it will take in terms of overhead to add a
new task. One solution to the problem is to provide the Reasoning Process with a running count of the
instantiated but unused task shells. Using this information, the Reasoning Process could adjust its
calculations of start times and execution times to account for the additional overhead if a new task is

required.

A second, and perhaps better approach, is to instantiate a predetermined number of each type of task
shell. This approach would allow a number of improvements. First, the variance in task creation times
would be eliminated. Second, it becomes easier to detect and handle potential memory shortages. If the
number of instantiated tasks is assumed to be the maximum allowed, an attempt to add a new task that
would exceed that maximum is easily detected. Once detected, it is then possible to determine which task,
if any, should be abandoned in favor of the new task.

6.3. Task Scheduling Evaluation

The evaluation of scheduling performance has to be looked at only to detect major deficiencies.
From that point of view, there were two significani problems encountered and one interesting anomaly.

The first problem dealt with the way missed deadlines were handled, and the second problem dealt with the

6-5

way durations for non-periodic tasks were calculated. The interesting anomaly dealt with the ordering of
periodic tasks with the same periods.

Originally, when a deadline violation was detected, a message was sent to the Reasoning Process
signaling the violation. In the case of a non-periodic task, the deadline violation was detected when the
task’s TCB made it to the head of the Latest_Start_Time_Queue, and the task dispatcher discarded the task.
For periodic tasks, a missed deadline was detected when the task was instructed to resume for its next
execution period. For non-periodic tasks, it was reasoned that the Reasoning Process would determine
whether or not to extend the deadline, cancel the task, or take some other action. The same was thought to

be the case for periodic tasks. For periodic tasks, this approach turned out to be infeasible.

The problem stemmed from the method used to insure the periodicity of the periodic tasks; adding
the task’s period to the last start time rather than the time the task is told to execute. What happens is a
cascading of missed deadlines because the time used to figure the next starting time of the periodic task
does not take into account any previous missed deadlines. In effect, it still tries to meet the deadline of the
next cycle even if it too has already past. "1 ne correction for this problem was to restart the period from the
time the missed deadline was detected, thus “forgetting” the cycle(s) that missed its deadline.

The problem with non-periodic task durations stems from the method used to adjust the duration of a
non-periodic task to account for the processor time consumed by the periodic tasks. The current method

uses the formula:

m, 0,

-0y " U=BD)

where m; is the mandatory duration of the task, o; is the optional duration, and BU is the current budgeted
periodic utilization. Because the budgeted periodic utilization is an average value, and not an accurate
reflection of a particular duration, as long as the non-periodic tasks are of relatively long durations, the
formula works well. However, it quickly fails to provide accurate predictions when non-periodic durations

are short.

One possible method to increase the accuracy of the predicted non-periodic durations is to create a
periodic task that is used to execute non-periodic tasks. This method would allow the Reasoning Process to

guarantee some minimum response times. By adjusting the duration and period of the task, the amount of

processor time allotted to non-periodic tasks could be better regulated. The new equation for calculating
the actual durations of non-periodic tasks becomes:

E, -[i"-]r and E, = [3'|T
c ¢ c

where T is the period of the task, ¢ is the duration of the task, m and o are the mandatory and optional

durations of the non-periodic task respectively, and E, , E, are the predicted execution times of the non-

periodic task.

The anomaly dealing with tasks of the same period is illustrated in Figure 6.5. Because the ordering
in the queues is only based upon one field in the task’s TCB, there are numerous cases where a “priority
inversion” can occur. This particular problem surfaced when a test case was run with all periods equal and
randomly generated importances. From Figure 6.5 it is clear that the priority assigned to each task will
depend solely upon its position in the queue, and not be influenced by its importance. The impact of this

priority inversion, however, is not clearly understood.

In gencral, for periodic tasks, the importance of a task only assures that the task will be in the
schedulable set, and the rate monotonic algorithm determines the priority of each task in that set. In the
case of all or some tasks in the schedulable set having the same period, priorities are assigned currently first
come first served. However, the set is still classified as schedulable and thus the priority assigned should
not matter. The testing conducted to date was unable to determine if the anomaly could cause problems.
Given better timing analysis tools and a more controlled execution environment, an understanding of the

impact of this inversion could be conducted. However, no timing faults could be traced to the inversion.

6.4. Code Complexity Analysis

In Chapter 3, improving algorithm efficacy was presented as a method of obtaining real-time
performance. This section examines the code that makes up the feasibility demonstration system in terms
of its time complexity. The analysis presented here should assist follow-on efforts in tuning the algorithms

used to obtain maximum performance from the system.

The results of the complexity analysis are shown in Table 6.1 and Table 6.2. In the tables, n is the

number of currently active periodic tasks and m is the number of currently active non-periodic tasks. The

were no unexpected results; however, there are a few areas that could be improved upon. First, the number
of context switches is excessive in some places and second, implementation of the task buffers needs a
reexamination. The task control buffers are the primary area where a simple change in data structures can

lead to significant performance gains.

Both Table 6.1 and Table 6.2 contain a column for the number of context switches. Context
switches are important because they consume significant amounts of processor time, dwarfing the code
complexity numbers for all but very large values of n (the average time for a context switch on the
Sparcstation is about 0.00025 seconds). A context switch occurs whenever one task calls another (as is the
case with the Task Manager writing to the task control buffers). The code developed did not explicitly try

to reduce the number of context switches and this issue should be addressed in the future.

The task control buffers, as written, used a linked list for implementation convenience. A task that
wishes to get something from the buffer provides an index value. The task buffer then searches through the
link list buffer until it finds the index and returns that item to the calling task. The effect of this
implementation is an O(n) operation every time the buffer is accessed. Since every active task accesses the

buffer at least once during its execution, this is a very inefficient data structure.

Also, there is very little structure to the access sequences. For example, the periodic task control
buffer access pattern is determined by the period of the periodic tasks. If a periodic task terminates and
then is reused, its period is most likely to be different than the previous one. In addition, the set of items in

the buffer only changes when a new task is instantiated, not when a task shell is reused.

Tasks By Period Queue

Period = 2. 0 Seconds
Importance = High

Period = 2, 0 Seconds
Importance = Low

Figure 6.5 Example of Execution Priority Inversion

6-8

Table 6.1 Time Complexity of Procedures Used By the Task Manager

Procedure Name Context Complexity for Complexity for
Switches Periodic Tasks Non-Periodic Tasks

Assign_Periodic_Priorities Om2)
Dispatch Tasks SA* O(n * SA) O(m * SA)
Feasible o(1) o)
Find_TCB O +1n) O(n + m)
Get_TCB 2 O@(3n + m) O(n+m)
Modify In*+* O(m?2) O(m)
Non_Periodic_Completed 1 O(m)
Periodic_Priorites_By_Importance n O(n2)
P_Tasks_<_P_Priorities 2n)
P_Tasks_>_P_Priorities 2n O(n2)
Schedule 1 O(n+m) O(n +m)
Some_Periodics_Optional n O(n2)
Un_Schedule) i O(n) O(m)

the time the procedure is called.

ek

*** only the non-periodic tasks require a context switch

only one context switch required for non-periodic task modify

SA stands for scheduling action, thus the order depends upon how many tasks need to start or stop at

Table 6.2 Time Complexity of Task Manager Entry Calls

Task Entry Name Procedures Called Context Complexity for Complexity for
Switches Periodic Tasks Non-Periodic Tasks

Add_Task Get_TCB, Feasible, 3n+1 O(m?) O(n + m)
Schedule, Un_Schedule

Modify_Task Find_TCB, Modify, 3n+1 O(n2) O(m)
Feasible .

Remove_Task Find_TCB, Un_Schedule 1 O(n) O(m)

Change_BU* Assign_Periodic_Priorities | 3n+ 1 Om2) O(m)

Task_Complete Non_Periodic_Completed 1 O(m)

*

6-9

Changing the budgeted periodic utilization affects both the periodic and non-periodic tasks.

Given the random access patterns and the fairly stable number of buffer items, a balanced binary tree
data structure may be much more efficient. Since the search through a balanced binary tree takes O(log n)
time, the speed of the buffer access could be significantly enhanced. The increased efficiency of this
heavily used data structure should provide substantial performance gains. Note that the

Tasks_By_ID_Queue could also benefit from this approach for the same reasons.

Although testing was not specifically conducted on the use of the priority deques, their use appears
extremely beneficial. First, the removal or value testing of the item at the head of the queue takes O(1)
time. Also, although in the worst case the time to insert an item into the priority queue is of O(n), the
ability to start the insertion from either end of the queue structure can help reduce the average insertion
time. For example, when inserting items into the time ordered queues (nearest time at the head of the queue
and farthest time at the tail) starting from the tail of the queue can result in better average insertion times.
This is because time is always advancing in a real-time system and new tasks generally have starting times
later than tasks currently in the system. Of course, in one particular system the opposite could be true. It is
recommended that the current time ordered deques (Ready_Queue, Deadline_Queue, and
Latest_Start_Time_Queue) remain as deques until some overwhelming evidence is produced to replace

them with some other data structure.

6.5. Results Summary

Testing of the feasibility demonstration systcm has validated the approach taken. In particular, the
Task Manager is able to dynamically create and control tasks as directed by the Reasoning Process. The
scheduling overhead incurred is not excessive and additional algorithm and data structure improvements
will reduce the scheduling overhead further. The feasibility demonstration system clearly shows the

viability of the architecture developed.

However, some performance gains are possible. The task control buffer’s internal data structures are
inappropriate in the current implementation. The same can be said for the Tasks_By_ID_Queue. Changing
these data structures to binary trees would improve the performance of these heavily used data structures.
In addition, an some effort should be expended to reduce the number of context switches required in the

current implementation.

6-10

VII. Conclusion

This research has taken the first steps of a much larger research effort into the development of
Intelligent Real-Time Systems. This chapter outlines the specific accomplishments of this thesis effort and

lays out some possible directions in which to continue the development of the architecture.

7.1. Summary

The primary result of this thesis effort is an intelligent real-time system architecture and top level
design. The majority of the effort expended in this thesis has gone into researching existing work in the
field and identifying what is required or common in most intelligent real-time systems and what appears to
be missing or needed. The architecture developed allows for inclusion of all the identified components.
Additionally, the implemented portions of the Task Manager directly address what is missing from other
intelligent real-time systems, namely guaranteed ability to meet task deadlines. Adding this ability to a
dynamic system involved development of the ability to dynamically create and control Ada tasks,
dynamically assign priorities to those tasks, and export task scheduling and execution controls to a
'Reasoning Process’, while maintaining a large degree of parallelism. The top level design and a robust
Task Manager has been implemented and the architecture’s feasibility demonstrated.

Overcoming the problems associated with dynamic task creation and control in Ada is fundamental
to the development of an intelligent real-time system implemented in Ada. The method developed has
demonstrated the ability to solve a large number of the problems involved with dynamic task creation.
Namely, it allows for re-use of Ada task shells and helps prevent a potentially serious memory leak.
Additionally, communication between the dynamically created tasks and the rest of the system has been
addressed and a method using a “variables buffer” has been implemented and demonstrated. The methods
developed to control the execution of the dynamically created tasks “appear to work well” in the limited
tests conducted. However, the limited testing leaves unanswered a large number of questions regarding the

efficiency of the methods developed.

Perhaps the single most important control implemented is the dynamic execution priority assignment
scheme. The methods as implemented in the Task Manager are effective in solving the problems posed in
guaranteeing real-time performance. The system is able to schedule and execute both periodic and non-

7-1

periodic tasks in both overloaded and non-overloaded situations, thus demonstrating an ability to degrade
gracefully. To add this capability, non-standard Ada had to be used. Ada does not provide for dynamic
task priority assignments and thus Verdix Ada specific procedures had to be used. The use of Verdix Ada
specific procedures and functions limits portability of the system. However, this problem of dynamic task
priority assignments in Ada is being addressed and may change in the near future [@Ada9X]. If and when
that happens, the methods used here will have to be reevaluated and most likely changed.

Exporting task scheduling and execution controls also was demonstrated and implemented. The
ability of the Reasoning Process to affect the current scheduling policies used without having to actually
implement the task scheduling itself allows the Reasoning Process to operate at a conceptually higher level.
Yet it can directly affect the execution of any particular task as it deems necessary. In effect, the Reasoning
Process is able to perform off-line scheduling while the Task Manager performs the on-line scheduling.
Again, the lack of an ability to “rigorously test” the implementation prevents optimizations to reduce the

overhead required to implement such abilities or characterize their behaviors.

Finally, the developed architecture has intentionally not sacrificed any inherent parallelism in order
to achieve some domain specific performance goals. The architecture developed here is easily
implementable on a multi-processor system with little, if any, re-writing of the code. The cost of

maintaining this parallelism is increased code complexity and the associated communication overhead.

The architecture as developed in this thesis effort is by no means the ideal one. Instead, this thesis
has presented one architecture and implementation and by doing so has charted a course for future work in
the field. The work done is leading edge research with a large number of unanswered questions and
potential problems. Like most difficult problems, this thesis effort has provided an incremental advance

towards a solution.

7.2. Recommendations

Since this research is not an end in itself, perhaps. the most important section is this one. The
recommendations presented here outline the research areas that still need to be addressed to fully
implement the developed architecture. Additionally, another potential path to achieve the same goal was
previously mentioned in Chapter 3 but not explored by this thesis: that path also deserves to be examined.

The following recommendations are divided into three parts: reccommendations to improve the implemented

7-2

Task Manager, architecture components other than the Task Manager, and other implementation and

development issues.

7.2.1. Task Manager Recommendations. The Task Manager as implemented can easily be improved
upon. First, the system as implemented does not make use of the full rate monotonic theory. In particular,
the blocking time any particular task may suffer is not included in the current periodic task utilization
calculations (Theorems 3 and 4 from Chapter 2). The effect is reduced accuracy in the utilization
calculations. Also, no allowance for aperiodic tasks is implemented, but details of how to incorporate
support for aperiodic tasks are readily available and should be incorporated into the implementation
[Sprunt, 1990].

The issues associated with determining the feasibility of the non-periodic tasks has not been
adequately addressed. As implemented, priorities of non-periodic tasks are assigned earliest deadline first,
and feasibility is only checked for tasks in isolation, not in conjunction with other non-periodic tasks of
varying importances. Incorporation of more robust (and correspondingly more time and space complex)
algorithms is required. Again, there exists a large body of knowledge dealing with these types of
algorithms to draw upon and allowances for incorporating these algorithms has been made in the existing
design [Liu, 1991] [Coffman, 1976].

Also, although memory management has been addressed, the problem has by no means been solved.
In particular, each data structure retains the maximum memory it has ever been allotted. This approach
may lead to problems when the system operates in an overloaded condition. There is currently no method
implemented to deal with Ada storage errors generated when no more memory is available. It is possible
for this condition to occur and a critical task is unable to execute. A method must be implemented to allow

for the reclamation of memory when required.

Finally, the problems with using the Ada delay statement for accurate timing control are well known
in the Ada community. The Task Dispatcher, as implemented, makes use of the Ada delay statement and
should be corrected. Attaching a procedure to directly respond to timer generated interrupts should greatly
enhance the timing accuracy of the Task Dispatcher.

7.2.2. Other Architecture Components Recommendations. Neither the Environment Model, System
Model, or the reasoning logic of the Reasoning Process was implemented in this thesis effort, primarily
because they all appear to be very domain specific. Choosing a domain and developing the reasoning logic,

7-3

Environment Model, and System Model for that domain should be attempted. Choosing a particular
domain should greatly simplify the development effort by anchoring the system to some definable
performance criteria to measure the effectiveness of the system as a whole. Thus, not only can speed of
execution be evaluated against some requirement, but also the quality of the system's responses can be

evaluated.

The Environment Model should allow for efficient access by all currently executing tasks and
address the issues of data consistency and data timeliness. Given time, I had envisioned using an object
oriented Ada pre-processor (Classic Ada) for implementing the Environment Model. I believe an object
oriented approach most suitable for this type of model but clearly the issue requires investigation.
Additionally, the tradeoffs associated with placement of the data pertaining to the condition of the

environment into a single repository versus distribution among the various tasks should be investigated.

The Systemn Model should allow the Reasoning Process the ability to make effective predictions of
future events and accurately reflect the current state of the system. A fundamental assumption of this thesis
effort was the existence of such a model in the form of a task network or plan-goal graph. Converting these
knowledge acquisition tools into an implementation usable by the reasoning process is required. The
envisioned method uses a graph structure with each node representing a task in the system. Future efforts
along these lines should closely examine the idea of temporal constraint networks when developing the

system model and the corresponding reasoning logic [Dechter, 1991].

The current Reasoning Process makes only minimum use of existing techniques for agenda
management. The architecture, however, allows for relatively easy inclusion of most of the techniques
developed under the Pilot’s Associate program and presented in section 2.3.3 of the thesis into design. By
moving the Reasoning Process to a separate processor and including the additional agenda management

techniques, I believe a significant overall performance gain can be achieved.

Finally, specific implementations of the I/O Process should be investigated to match performance
with system capabilities. In particular, the idea of reflexive behavior can be implemented by allowing the
I/O Process to instantiate tasks in response to external events directly, without having to report the event
first to the Reasoning Process. The correct mix of this type of reactive behavior versus reasoned behavior

should be investigated.

74

7.23. Implementation and Development Recommendations. The development of this thesis suffered
significantly from the lack of a dedicated or single user workstation. Because the system was developed on
a multi-user system, accurate timing information is virtually impossible to obtain. The multi-user system
used allows other processes to start and stop at anytime. Additionally, there is the additional overhead
associated with managing multiple user processes. It is highly recommended that any future effort use a
dedicated workstation operating in the single user mode to provide an accurate picture of the system’s

performance and timing characteristics.

Although allowed for in the design, the system does not make use of multi-processors. Splitting the
system across multiple processors would greatly increase the performance of the system. I would
recommend moving the Reasoning Process to a separate machine as the first step. This move would
alleviate the problem of which priority to assign the Reasoning Process. Additionally, it should allow the
remaining components {o act more as a traditional real-time system with the corresponding improvement in
its ability to meet task deadlines, while at the same time, allowing the Reasoning Process more

computational resources and hopefully a corresponding increase in overall system performance.

Tools for the development of these types of systems should also be explored. In particular, tools to
debug multiple task Ada programs should be examined. Also useful, would be the development of a
system that allows for a 'rubber clock’ so that system's view of the passage of time could be slowed. The
rubber clock would allow a programmer the ability to step through the program with the clock only
advancing by the time to execute each step and stopping while the programmer examines the results of that

step.

The final recommendation is for a more rigorous specification process to be conducted.
Unfortunately, only modest software engineering techniques were applied in the development of the
feasibility demoustration system. Using a structured analysis and design method would provide better
measurement criteria, greater design visibility, and perhaps increased performance. Using this thesis and

the accompanying code as a guide, the task could be easily accomplished as another thesis effort.

7.3. Thesis Summary

The literature review reported in Chapter 2 identified the Environment Model, System Model, I/O
Process, Reasoning Process, and Task Manager as the components necessary for an intelligent real-time

system. It also identified real-time task scheduling and deadline guarantees as the missing component in

7-5

most previous IRTSs. In addition, ratc monotonic theory and imprecise computation scheduling were
discussed as ways to handle real-time task scheduling. Finally, Chapter 2 identified the general task types
any-time, singular, and periodic.

Chapters 3 discussed IRTS performance measures and design considerations. Speed,
responsiveness, timeliness, graceful degradation, data consistency, and solution quality are the performance
measures for intelligent real-time systems. Control reasoning, focus of attention, parallelism, and
improving algorithm efficacy are design considerations used when addressing the performance measures.

Chapter 3 concluded with the rationale for the design approach used.

Chapter 4 presented the top level view of an intelligent system architecture and discussed general
issues of the architecture. The methods used to perform on-line task scheduling of both non-periodic and
periodic tasks was presented. Chapter 5 discussed the details of the demonstration system implemented to
confirm the feasibility of the architecture presented in Chapter 4 and Chapter 6 discussed the results of the

feasibility demonstration.

This thesis effort has researched and developed a feasible architecture for use in creating an
intelligent real-time system. Dynamic task creation and real-time scheduling methods were developed and
successfully demonstrated. But the work is not complete. It is clear that further research is required along
a number of different paths. This research establishes a starting point and provides possible paths for
further work.

7-6

Appendix A. Test Results

This appendix contains numerous graphs that show the results of timing tests conducted on the
feasibility demonstration system. The effect of the underlying UNIX multiproccssing/time slicing
operating system can be clearly seen in all the graphs. The graphs are not intended to be accurate measures
of the systems performance, rather they are intended to validate the approach taken in this research. In
addition, a number of “queue dumps” are included that show the effects of adding, modifying, or removing
tasks from the Task Manager.

A.l Scheduling Overhead Timing Results

Figures A.1 through A.4 show a sample of the measured times to add, modify, and remove periodic
tasks. For these tests, a loop which first added a new task, then modified it was executed 150 tasks. Once
all 150 tasks were created, another loop was executed which removed all 150. Both loops were run 20
times and the minimum, maximum, and average times for each operation recorded. The vertical lines
represent the range of times obtained with the comresponding number of acitve tasks in the system. The tick
marks on each line represent the minimum, average, and maximum times. For these tests, there were no

non-periodic tasks currently active in the system.

Figures A.5 through A.8 show a sample of the measured times to add, modify, and remove non-
periodic tasks. The same testing method used for the periodic task tests was used to acquire these times.

For these tests, there were no periodic tasks currently active in the system.

oSt

palenueIsu] JSBL, MON ‘OWLL PPV SYSEL OIpoudd 'V amSig

SHSE| SOIpoed BANIOY JO JequnnN 0

ML B R LR Ltk rnnbnnnnnnnnenennpneneeenennnetaintdnt et ARt nniine ot RANRAE AONRE RN DRNNARARRAR RRRRL AR RANARINL)

0

G000

- - \ - 0100

} L H L TTT 4] i Hp 4 44 -
B! Y - d - - . A 4 4l - - i

AU B L LRET i 1 [
dH = i |

SL00
I 1 I
- -4 . 3

0200

Gec0'0

(spuooeg) swi}

A-2

PosNay 119YS NSEL ‘SWIL PPV SNSEL d1pousd 7'V 2inSig

S)SE| SOIpoLed A0V JO JequinN
0] 0

%

ﬁ Lk N TTACH] 11 1 [

il 10°0

: H - x .
[4 WA 1] ﬁxf 1141 4 4+ 1 ! =
Lﬁ ﬁlﬁ ﬁl... 4 ..ﬁlﬁ lﬁl — ._ L - nwo
1 L - 5100 @
i . - o0 ¢
] 1 1 i i i i 3
! e

A3

oSt

paduey) souenodu] pue poudd ‘dwn], AJIPOJ SYSe] d1poUdd €'V 2m3L]

S)sk| SOIpousd 8ANOY 4O Jequinn

l'll'

10070

¥

LI I A |

€000

LELIRBRJ

€000

¥00°0

Trry

S00°0

©
o
Q
o

LIS

~
o
o
o

LA LS

8000

LR AL

600°0

00

(spuooes) eawi|

oSt

QUILY, SAOUIDY SYSE], J1poldd +'v 2andig

SHSE| SOIPOS, SAIIOY JO JequnN

L L R L L L L LR LR PRt LR IR RO LN AR LR Rt A LRt R RELE

0

T 11y

+00°0

| T

L

c00'0

Trrv

£00°0

00°0

LARL I BB J

y

o
o
o

¢
o
Q
o

LEE LIRS

(spuooasg) awi|

A-S

patenuElsul JSel, MIN ‘QWL], PPY SHSEL O1pousf-uoN §°V 23y

oS 1 S)SEe | SOIPOLSd-UON 8AlDY JO JequinN

nuupppnunp R pnppppppugipnn ppu iU i nun L. o

—

=
1
;-
L
AN §
| S -
o
L
)
e
1
[l
1
1
L
t
1
4
L

11 108,
11 11

(spuodeg) ewi|

A-6

PIsNaY [I9YS ASEL ‘OWIL PPV SHSEL JIPOUSJ-UON 9'V 2InSig

oSt S)SE | SOIPOLOd-UON A0V JO JOQUUNN

; e 000
I I R L (THIIE
~ = ul - i !
23 100
| Il | 1
o |
1 : 5
- = e
SL00 &
i .—H.)
o
a
Lrlr Iﬂw\
<00
Gc0'0
€00

A7

poSuey) 2ouenodur] pue sulpea(] ‘owl], AJIPO S3SEL OIPOUS-UON L'V 2In31g

oSt S)Se | SOIpPouLad-UON SAROY JO Jaquunp 0
LLL L0 L RUEE L UL ULELE LR LD LE DY 00 L LER DN L RO RN RALEE AN AL ELO0 LEOY RADEY0 RARS RO ONE LR RN RLERRE ERRUEERIRE DN O D CLLERE LR LI o

LI B HH_.E, -H_ ,Eu IHE H= 1 il Il z00-0
M | I 10

o
o
(spuooeg) awi]

A-8

JUIL] SAOWIY SHSE L DIPOLIDJ-UON 8°V 2anSig

(0]=43 S)se | SOIPOolLI84-UON OA|10VY JO JaqunpnN

R e A e TR P R R TR R HETHE i

A-9

(spuodeg) ewi)

A.2. Schedules Produced

The following sample printouts show the affect of adding a periodic task whose additional utilization
causes the the periodic condition to change from ALL_OPTIONAL to SOME_OPTIONAL. Periodic task
kind 8 has mandatory duration of 0.008 seconds and an optional duration of 0.02 seconds. The first
printout shows the state of the periodic task set before the addition of Task ID 1280600 and the second one
shows the state of the periodic task set after Task ID 1280600 has been added. Note some tasks have been

deleted from the printout to make it easier to read.

Task ID Period Kind Importance Priority Mode
1233880 1.12100 8 46 90 OPTIONAL
848440 1.49900 8 13 89 OPTIONAL
976920 2.29800 8 24 88 OPTIONAL
1245560 2.39900 8 47 87 OPTIONAL
790040 2.43300 8 8 86 OPTIONAL
965240 2.59300 8 23 85 OPTIONAL
801720 3.42200 8 9 84 OPTIONAL
930200 3.78900 8 20 83 OPTIONAL
731640 3.93600 8 3 82 OPTIONAL
1058680 4.23600 8 31 81 OPTIONAL
1257240 4.34100 8 48 80 OPTIONAL
836760 4.36300 8 12 79 OPTIONAL
1035320 4.45700 8 29 78 OPTIONAL
860120 4.49800 8 14 77 OPTIONAL
1011960 4.60500 8 27 76 OPTIONAL
918520 4.96800 8 19 75 OPTIONAL
719960 5.13200 8 2 74 OPTIONAL
825080 5.40600 8 11 73 OPTIONAL
906840 5.57900 8 18 72 OPTIONAL
883480 5.64100 8 16 71 OPTIONAL
941880 5.90700 8 21 70 OPTIONAL
988600 6.09400 8 25 69 OPTIONAL
871800 6.61600 8 15 68 OPTIONAL
1187160 7.15300 8 42 67 OPTIONAL
1082040 7.47600 8 33 66 OPTIONAL
1047000 7.48300 8 30 65 OPTIONAL
1128760 7.51200 8 37 64 OPTIONAL
895160 7.52000 8 17 63 OPTIONAL
1210520 7.64000 8 44 62 OPTIONAL
1222200 7.68000 8 45 61 OPTIONAL
1000280 7.92000 8 26 60 OPTIONAL
1093720 8.14400 8 34 59 OPTIONAL
1070360 8.21900 8 32 58 OPTIONAL
1140440 8.24400 8 38 57 OPTIONAL
1152120 8.38500 8 39 56 OPTIONAL
778360 8.86800 8 7 55 OPTIONAL
1117080 8.90200 8 36 54 OPTIONAL
953560 8.92700 8 22 53 OPTIONAL
755000 8.97900 8 5 52 OPTIONAL
743320 9.37000 8 4 51 OPTIONAL
1175480 9.79600 8 41 50 OPTIONAL
813400 9.82100 8 10 49 OPTIONAL
1163800 10.03100 8 40 48 OPTIONAL
1268920 10.12300 8 49 47 OPTIONAL

A-10

1105400 10.13400 8 35
1198840 10.46100 8 43
766680 10.68200 8 6
1023640 10.76600 8 28

Periodic Utilization =>
Mandatory Utilization =>
Optional Utilization =>
Required Utilization =>
Periodic Utilization Budget =>
Current Periodic Condition =>

NN

Task ID Period Kind
1233880 1.12100 8 46
848440 1.49900 8 13
976920 2.29800 8 24
1245560 2.39900 8 47
790040 2.43300 8 8
1280600 2.55800 8 49
965240 2.59300 8 23
801720 3.42200 8 9
330200 3.78900 8 20
731640 3.93600 8 3
1058680 4.23600 8 31
1257240 4.34100 8 48
836760 4.36300 8 12
1035320 4.45700 8 29
860120 4.49800 8 14
1011960 4.60500 8 27
918520 4.96800 8 19
719960 5.13200 8 2
825080 5.40600 8 11
906840 5.57900 8 18
883480 5.64100 8 16
941880 5.90700 8 21
988600 6.09400 8 25
871800 6.61600 8 15
1187160 7.15300 8 42
1082040 7.47600 8 33
1047000 7.48300 8 30
1128760 7.51200 8 37
895160 7.52000 8 17
1210520 7.64000 8 44
1222200 7.68000 8 45
1000280 7.92000 8 26
1093720 8.14400 8 34
1070360 8.21900 8 32
1140440 8.24400 8 38
1152120 8.38500 8 39
778360 8.86800 8 7
1117080 8.90200 8 36
953560 8.92700 8 22
755000 8.97900 8 5
743320 9.37000 8 4
1175480 9.79600 8 41
813400 9.82100 8 10
1163800 10.03100 8 40
1268920 10.12300 8 49
1105400 10.13400 8 35
1198840 10.46100 8 43
766680 10.68200 8 6
1023640 10.76600 8 28

46
45
44
43

.75986964545906E-01
.23119017066736E-02
.75986964545906E-01
.79270430800456E-01
4.00000000000000E-01
ALL OPTIONAL

Importance Priority

90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
13
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47

45
44
43
42

OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL

OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
MANDATORY
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
MANDATORY
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
MANDATORY
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL

Periodic Utilization => 2.77404244072816E-01
Mandatory Utilization => 8.56348102289566E-02
Optional Utilization => 2.87128481355913E-01
Required Utilization => 2.79229184559615E-01
Periodic Utilization Budget => 4.00000000000000E-01
Current Periodic Condition => SOME_OPTIONAL

The following printouts show the affects of modifying a periodic task. In this case, the period of
Task ID 801720 has been changed from 2.422 seconds to 3.422 seconds and its importance value decreased
by one. Note its priority has been changed to reflect its new period along with the priority of Task ID
790040.

Task ID Period Kind Importance Priority Mode
801720 2.42200 8 8 90 OPTIONAL
790040 2.43300 8 8 89 OPTIONAL
731640 3.93600 8 3 88 OPTIONAL
719960 5.13200 8 2 87 OPTIONAL
778360 8.86800 8 7 86 OPTIONAL
755000 8.97900 8 5 85 OPTIONAL
743320 9.37000 8 4 84 OPTIONAL
766680 10.68200 8 6 83 OPTIONAL

.83728493284041E-02
.44269901505767E-02

Periodic Utilization =>
Mandatory Utilization =>
Optional Utilization => .83728493284041E-02
Required Utilization => .89624744528825E-01
Periodic Utilization Budget => 4.00000000000000E-01
Current Periodic Condition => ALL OPTIONAL

N b=

Task ID Period Kind Importance Priority Mode
790040 2.43300 8 8 90 OPTIONAL
801720 3.42200 8 9 89 OPTIONAL
731640 3.93600 8 3 88 OPTIONAL
719960 5.13200 8 2 87 OPTIONAL
778360 8.86800 8 7 86 OPTIONAL
755000 8.97900 8 5 85 OPTIONAL
743320 9.37000 8 4 84 OPTIONAL
766680 10.68200 8 6 83 OPTIONAL

.49341776161001E-02
.34014213942755E-02

Periodic Utilization =>
Mandatory Utilization =>
Optional Utilization => .49341776161001E~-02
Required Utilization => .89624744528825E-01
Periodic Utilization Budget => 4.00000000000000E-01
Current Periodic Condition => ALL_OPTIONAL

(SR

The following printout traces modify operations on an active set of any-time tasks. There are two
sets of data for each modify operation, one taken immediately before the modify, and one immediately
after. During the modify, a task’s deadline and importance is changed. The numbers in the status column
represent the task’s current state. The number to state translation is as shown in Table A.1. Note that at

times, the time remaining for a task jumps back up to 0.100 seconds. The reason for the jumps is the

method used to handle errors induced by the UNIX multitasking opersting system. In order to insure that
the time remaining never goes negative, a check in the code detects this situation and sets the time

remaining to 0.100 seconds.

Table A.1 Printout Status Number to State Name Translation

1 EXECUTING periodic tasks

2 EXECUTING_MANDATORY non-periodic tasks
3 EXECUTING_OPTIONAL non-periodic tasks
4 PREEMPTED_MANDATORY non-periodic tasks
5 PREEMPTED_OPTIONAL non-periodic tasks
6 DISCARDED non-periodic tasks
7 COMPLETED non-periodic tasks

>>>>>>>>> The Time Now is => 60175.427 Periodic Utilization Budget => 5.00E-01 <<<<<<<<<
Durations Time Latest
Task ID Mandatory Optional Remaining Start-Time Deadline Started-At Importance Status Start-Time

749552 0.100 1.000 0.200 60175.363 60178.886 60175.422 1 2

>>>>>>>>> The Time Now is => 60175.453 Periodic Utilization Budget => 5.00E-01 <<<<<<<<<
Durations Time Latest
Task ID Mandatory Optional Remaining Start-Time Deadline Started-At Importance Status Start-Time

749552 0.100 1.000 0.178 60175.363 60179.886 60175.422 2 2

>>>>>>>>> The Time Now is => 60175.727 Periodic Utilization Budget => 5.00E-01 <<<<<<<<<
Durations Time Latest
Task ID Mandatory Optional Remaining Start-Time Deadline Started-At Importance Status Start-Time

749552 0.100 1.000 1.760 60175.363 60179.886 N/A 2 S 60178.126
761232 0.100 1.000 0.200 60175.674 60185.718 60175.725 2 2
>>>>>>>>> The Time Now is => 60175.757 Periodic UOtilization Budget => 5.00E-01 <<<<<<<<<
Durations Time Latest
Task ID Mandatory Optional Remaining Start-Time Deadline Started-At Importance Status Start-Time
749552 0.100 1.000 1.760 60175.363 60179.886 N/A 2 5 60178.126
761232 0.100 1.000 0.178 60175.674 60186.718 60175.725 3 2

>>>>>>>>> The Time Now is => 60176.139 Periodic Utilization Budget => 5.00E-01 <<<<<<<<<
Durations Time Latest
Task ID Mandatory Optional Remaining Start-Time Deadline Started-At Importance Status Start-Time

749552 0.100 1.000 1.321 60175.363 60179.886 N/A 2 5 60178.565
761232 0.100 1.000 2.000 60175.674 6C186.718 N/A 3 5 60184.718
772912 0.100 1.000 0.200 60175.983 60185.558 60176.135 3 2

A-13

>>>>>>>>> The Time Now 1s
Durations
Task ID Mandatory Optional

=>
Time
Remaining Start-Time

749552 0.100 1.000
761232 0.100 1.000
772912 0.100 1.000

>>>>>>>>> The Time Now 18
Durations
Task ID Mandatory Optional

1.321 60175.363
2.000 60175.674
0.178 60175.983

=>
Time

Deadline

60179.886
60186.718
60186.558

60176.169 Periodic Utilization Budget => 5.00E-01 <<<<<<<<<

Latest

Started-At Importance Status Start-Time

N/A
N/A
60176.135

2
3
4

5 60178.565
5 60184.718
2

60176.431 Periodic Dtilization Budget => 5.00E-D1 <<<<<<<<<

Latest

Remaining Start-Time Deadline Started-At Importance Status Start-Time

749552 0.100 1.000
761232 0.100 1.000
772912 0.100 1.000
784592 0.100 1.000
>>>>>>>>> The Time Now is

Durations
Task ID Mandatory Optional

1.122 60175.363
2.000 60175.674
2,000 60175.983
0.200 60176.392
=>
Time

Remaining Start-Time

60179.886
60186.718
60186.558
60188.011

N/A

N/A

N/A
60176.426

2
3
4
4

5 60178.764
5 60184.718
5 60184.558
2

60176.474 Periodic Utilization Budget => 5.00E-01 <<<<<<<<<

Latest

Deadline Started-At Importance Status Start-Time

749552 0.100 1.000
761232 0.100 1.000
772912 0.100 1.000
784592 0.100 1.000
>>>>>>>>> The Time Now is

Durations
Task ID Mandatory Optional

749552 0.100 1.000
761232 0.100 1.000
772912 0.100 1.000
784592 0.100 1.000
796272 c.100 1.000
>>>>>>>>> The Time Now 18

Durations

1.122 ©60175.363
2.000 60175.674
2.000 60175.983
0.163 60176.392

=>

60179.886
60186.718
60186.558
60189.011

R/A

N/A

N/A
60176.426

2
3
4
5

5 60178.764
5 60184.718
5 60184.558
2

60176.735 Periodic Utilization Budget => 5.00E-01 <<<<<<<<<

Time Latest
Remaining Start-Time Deadline Started-At Importance Status Start-Time
0.909 60175.363 60179.886 N/A 2 5 60178.977
2.000 60175.674 60186.718 N/A 3 S 60184.718
2.000 60175.983 60186.558 N/A 4 5 60184.558
2.000 60176.392 60189.011 N/R 5 5 60187.011
0.260 60176.713 6018€.154 60176.734 5 2
=> 60176.749 Periodic Utilization Budget => 5.00E-01 <<<<<<<<<
Time Latest

Task ID Mandatory Optional Remaining Start-Time Deadline Started-At Importance Status Start-Time
749552 G¢.100 1.000 0.909 60175.363 60179.886 ¥/A 2 5 601178.977
761232 0.100 1.000 2.000 60175.674 60186.718 N/A 3 5 60184.718
772912 0.100 1.000 2.000 60175.983 60186.558 N/A 4 5 60184.558
784592 0.100 1.000 2.000 60176.392 60189.011 N/A 5 5 60187.011
796272 0.100 1.000 0.187 60176.713 60187.154 60176.734 3 2

>>>>>>>>> The Time Now is => 60177.109 Periodic Utilization Budget => 5.00E-01 <<<<<<<<<
Durations Time Latest

Task ID Mandatory Optional Remaining Start-Time Deadline Started-At Importance Status Start-Time
749552 0.100 1.000 0.749 60175.363 60179.886 N/A 2 5 60179.137
761232 0.100 1.000 2.000 60175.674 60186.718 N/A 3 5 60184.718
772912 0.100 1.000 2.000 60175.983 60186.558 N/a 4 5 60184.558
784592 0.100 1.000 2.000 60176.392 60189.011 N/A N 5 60187.011
796272 0.100 1.000 2.000 60176.713 60187.154 N/A 6 5 60185.154
807952 0.100 1.000 0.200 60177.015 60178.735 60177.108 6 2

>>>>>>>>> The Time Now is => 60177.153 Periodic Utilization Budget => 5.00E-01 <<<<<<<<<
Durations Time Latest

Task ID Mandatory Optional Remaining Start-Time Deadline Started-At Impertance Status Start-Time
749552 0.100 1.000 0.749 60175.363 60179.886 N/A 2 5 60179.137
761232 0.100 1.000 2.000 60175.674 60186.718 N/A 3 5 60184.718
772912 0.100 1.000 2.000 60175.983 60186.558 N/A 4 5 60184.558
784592 0.100 1.000 2.000 60176.392 60189.011 N/A 5 5 60187.011
796272 0.100 1.000 2.000 60176.713 60187.154 N/A 6 5 60185.154
807952 0.100 1.000 0.165 60177.015 60179.735 60177.108 7 2

>>>>>>>>> The Time Now is => 60177.415 Periodic Utilization Budget => 5.00E-01 <<<<<<<<<
Durations Time Latest

Task ID Mandatory Optional Remaining Start-Time Deadline Started-At Importance Status Start-Time
749552 0.100 1.000 0.749 60175.363 60179.886 N/A 2 5 60179.137
761232 0.100 1.000 2.000 60175.674 60186.718 N/A 3 5 60184.718
772912 0.100 1.000 2.000 60175.983 60186.558 N/A 4 5 60184.558
784592 0.100 1.000 2.000 60176.392 60189,011 N/A 5 5 60187.011
796272 0.100 1.000 2.000 60176.713 60187.154 N/A 6 5 60185.134
807952 0.100 1.000 1.777 60177.015 60179.735 N/A 7 5 60177.958
819632 0.100 1.000 0.200 60177.374 60180 281 60177.414 7 2

A-14

>>>>>>>>> The Time Now 1s

=> 60177.432 Periodic Utilization Budget => 5.00E-01 <<<<<<<<<

Durations Time Latest
Task ID Mandatory Optional Remaining Start-Time Deadline Started-At Importance Status Start-Time
749552 0.100 1.000 0.749 60175.363 60179.886 N/A 2 5 60179.137
761232 0.100 1.000 2.000 60175.674 60185.718 N/A 3 5 60184.718
772912 0.100 1.000 2.000 60175.983 60186.558 N/A 4 5 60184.558
784592 0.100 1.000 2.000 60176.392 60189.011 N/A 5 5 60187.011
796272 0.100 1.000 2.000 60176.713 60187.154 N/A 6 5 60185.154
807952 0.100 1.000 1.777 60177.015 60179.735 N/A 7 5 60177.958
819632 0.100 1.000 0.185 60177.374 60181.281 60177.414 8 2
>>>>>>>>> The Time Now is => 60177.729 Periodic Utilization Budget => 5.00E-01 <<<<<<<<<
Durations Time Latest
Task ID Mandatory Optional Remaining Start-Time Deadline Started-At Importance Status Start-Time
749552 0.100 1.000 0.749 60175.363 60179.886 N/A 2 5 60179.137
761232 0.100 1.000 2.000 60175.674 60186.718 N/A 3 5 60184.718
772912 0.100 1.000 2.000 60175.983 60186.558 N/A 4 5 60184.558
784592 0.100 1.000 2,000 60176.392 60189.011 N/A 5 5 60187.011
796272 0.100 1.000 2.000 60176.713 60187.154 N/A 6 5 60185.154
807952 0.100 1.000 1.417 60177.015 60179.735 N/A 7 5 60178.318
819632 0.100 1.000 2.000 60177.374 60181.281 N/A 8 5 60179.281
831312 0.100 1.000 0.200 60177.651 60188.236 60177.728 8 2
>>>>>>>>> The Time Now is => 60177.748 Periodic Utilization Budget => 5.00E-01 <<<<<<<<<
Durations Time Latest
Task ID Mandatory Optional Remaining Start-Time Deadline Started-At Importance Status Start-Time
749552 0.100 1.000 0.749 60175.363 60179.886 N/A 2 5 60179.137
761232 0.100 1.000 2.000 60175.674 60186.718 N/A 3 5 60184.718
712912 0.100 1.000 2.000 60175.983 60186.558 N/A 4 5 60184.558
784592 0.100 1.000 2.000 60176.392 60189.011 N/A 3 5 60187.011
796272 0.100 1.000 2.000 60176.713 60187.154 N/A 6 5 60185.154
807952 0.100 1.000 1.417 60177.015 60179.735 N/A 7 5 60178.318
819632 0.100 1.000 2.000 60177.374 60181.281 N/A 8 5 60179.281
831312 0.100 1.000 0.183 60177.651 60189.236 60177.728 9 2
>>>>>>>>> The Time Now is => 60178.025 Periodic Utilization Budget => 5.00E-01 <<<<<<<<<

Durations

Task ID Mandatory Optional

Time

Remaining Start-Time

Latest

Deadline Started-At Importance Status Start-Time

749552
761232
772912
784592
796272
807952
819632
831312
842992

DED3335>>

0.100 1.000
0.100 1.000
0.100 1.000
0.100 1.000
0.100 1.000
0.100 1.000
0.100 1.000
0.100 1.000
0.100 1.000

The Time Now is
Durations

Task ID Mandatory Opticnal

0.749
2.000
2.000
2.000
2.000
1.111
2.000
2.000
0.200

60175.363
60175.674
60175.983
60176.392
60176.713
60177.015
60177.374
60177.651
60177.971

60179.886
60186.718
60186.558
60189.011
60187.154
60179.735
60181.281
60189.236
60183.258

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
60178.022

WODLOWLdWwi

60179.137
60184.718
60184.558
60187.011
60185.154
60178.624
60179.281
60187.236

N O L,

=> 60178.069 Periodic Utilization Budget => 5.00E-01 <<<<<<<<<

Time

Remaining Start-Time

Latest

Deadline Started-At Importance Status Start-Time

749552
761232
772912
784592
796272
807952
819632
831312
842992

DEO55D5>>

0.100 1.000
0.100 1.000
0.100 1.000
0.100 1.000
0.100 1.000
0.100 1.000
0.100 1.000
0.100 1.000
0.100 1.000

The Time Now is
Durations

Task ID Mandatory Optional

749552
761232
772912
784592
796272
807952
819632
831312
842992
854672

2OI3O555>

0.749
2.000
2.000
2.000
2.000
1.111
2.000
2.000
0.164

60175.363
60175.674
60175.983
60176.392
60176.713
60177.015
60177.374
60177.651
60177.971

60179.886
60186.718
60186.558
60189.011
60187.154
60179.735
60181.281
60189.236
60184.258

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
60178.022

1

2

[« RV R JES N W J W]

60179.137
60184.718
60184.558
60187.011
60185.154
60178.624
60179.281
60187.236

N e

=> 60178.335 Periodic Utilization Budget => 5.00E-01 <<<<<<<<<

Time

Remaining Start-Time

Latest

Deadline Started-At Importance Status Start-Time

0.100 1.000
0.100 1.000
0.100 1.000
0.100 1.000
0.100 1.000
0.100 1.000
0.100 1.000
0.100 1.000
0.100 1.000
0.100 1.000

The Time Now is
Durations

Task ID Mandatory Optional

749552

0.100 1.000

0.749
2.000
2.000
2.000
2.000
0.926
2.000
2.000
2.000
0.200

60175.363
60175.674
60175.983
60176.392
60176.713
60177.015
60177.374
60177.651
60177.971
60178.301

60179.886
60186.718
60186.558
60189.011
60187.154
60179.735
60181.281
60189.236
60184.258
60182.336

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
60178.324

—

OO0V IRLEBEWN

60179.137
60184.718
60184.558
60187.011
60185.154
60178.809
60179.281
60187.236
60182.258

[NEERENE RS RENT NONENT)

=> 60178.432 Periodic Utilization Budget => 5.00E-01 <<<<<<<<<

Time

Latest

Remaining Start-Time Deadline Started-At Importance Status Start-Time

0.749

60175.363

60179.886

A-15

N/A

5 60179.137

761232
772912
784592
796272
807952
819632
831312
842992
854672

0.100
0.100
0.100
0.100
0.100
0.100
0.100
0.100
0.100

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

>>>>>>>>> The Time Now is

Durations

Task ID Mandatory Optional

749552
761232
772912
784592
796272
807952
819632
831312
842992
854672
878032

235555555

0.100
0.100
0.100
0.100
0.100
0.100
0.100
0.100
0.100
0.100
0.100

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

The Time Now is

Durations

Task ID Mandatory Optional

749552
761232
772912
784592
796272
807952
819632
831312
842992
854672
878032

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

60175.
60175.
60176.
60176.
60177.
60177.
60177.
60177.
60178.

674
983
392
713
015
374
651
971
301

60186.
60186.
60189,
60187,
60179.
60181.
60189.
60184.
60183.

718
558
011
154
735
281
236
258
336

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
60178.324

-

HOWYOJAWO® W

INRERERE N RSN NS RS)

€N184.718
60184.558
60187.011
60185.154
60178.809
60179.281
60187.236
60182.258

=> 60180.039 Periodic Utilization Budget => 5.00E-01 <<<<<<<<<

Time

Remaining Start-Time Deadline

0.749
2.000
2.000
2.000
2.000
0.100
2

2

60175,
60175.
60175.
60176.
60176.
60177.
60177.
60177.
60177.
60178.
60179.

363
674
983
392
713
015
374
651
971
301
983

60179.
60186.
60186.
60189.
60187.
60179.
60181.
60189.
60184,
60183.
60184.

886
718
558
011
154
735
281
236
258
336
180

Latest

Started-At Importance Status Start-Time

N/A
N/A
N/A
N/A
N/A
60180.036

-
= OWo oL

NoOoOAARD AN O

60179.635

=> 60180.101 Periodic Utilization Budget => 5.00E-01 .<<<<<<<<

Time

Remaining Start-Time

0.749
2.000
2.000
2.000
2.000
0.100
2.000
2.000
2.000
2.000
0.166

Latest
Deadline Started-At Importance Status Start-Time
60175.363 60179.886 N/A 2 6
60175.674 60186.718 N/A 3 6
60175.983 60186.558 N/A 4 6
60176.392 60189.011 N/A 5 6
60176.713 60187.154 N/A 6 6
60177.015 60179.735 60180.099 7 2
60177.374 60181.281 N/A 8 6
60177.651 60189.236 N/A 9 6
60177.971 60184.258 N/A 10 6
60178.301 60183.336 N/A 11 6
60179.983 60184.180 N/A 1 6

A-16

Appendix B. Periodic Priority Assignment Methods Investigated

Using rate monotonic theory to schedule the periodic tasks requires that priorities be assigned based
upon the period of each task. In theory, this sounds simple, but in practice, additional problems arise. In
particular, a problem arises when there are more periodic tasks than there are periodic priorities. The

investigation undertaken to solve that problem is outlined in the following sections.

B.1. Periodic Priority Assignment Problem and Potential Solution Methods

The problem of assigning priorities to periodic tasks is compounded by the dynamic nature of the
system. At any one time there may be only a handful of tasks, with more than enough distinct priorities to
assign a unique priority to each task. At other times, there may be many more periodic tasks than periodic
priorities. When this condition occurs, the problem becomes one of determining which tasks to assign to
which priority 'bin’. The problem is better illustrated in Figure B.1.

By examining the figure, four possible groupings for the tasks stand out. This tends to put a large
number of tasks into the priority bins for tasks of shorter periods and hardly any in the priority bins for the
tasks with longer periods. A solution might be to assign tasks based upon some predetermined method or
try to calculate the best method for the current situation. It is possible for the situation shown above to be
reversed, and have a large number of tasks with long periods and only a small number of tasks with short
periods. Four methods were developed to handle the problem under different conditions. No attempt is
made to determine which is the best, rather this research illustrates that different solutions are possible and
should be examined in future work. The four methods developed are called Static, Linear, Normal

Distribution, and Simple.

The simple method is for the trivial case were the number of periodic tasks is less than the number of
periodic priorities. A count of the number of currently active periodic tasks is always maintained by the
system and the simple method is always employed if it can be. This method meets the theoretical basis
used in the rate monotonic algorithm and assigns each periodic task a distinct priority and is the ideal
method of assigning priorities when using the rate monotonic algorithm. The other methods are described
in the following sections.

B-1

Period

Figure B.1 Example Periods of a Task Set

B.1.1. Periodic Priorities Normal Distribution Method. The Normal Distribution method is
designed around the assumption that the periodic task's periods will, as the name implies, have a statistical
normal distribution. Thus, the middle priorities have more tasks than either the highest or lowest priorities.
There is no empirical basis for this assumption and the purpose of implementing it is o show how
statistical distributions can be used to help assign priorities in a dynamic system. Other distributions are

likely in any given domain. Figure B.2 illustrates the concept.

The algorithm used to implement the normal distribution method uses the standard formula's to
calculate the mean and variance [Allen, 1990]. The mean and standard deviation can be quickly calculated
with each new task that is added or removed. Once they are calculated, the values of the periods that
belong to each priority bin are calculated by dividing the spread between t 2 standard deviations from the
mean by the number of periodic priorities minus two. The highest periodic priority is used for tasks with
periods that are less than 2 standard deviations below the mean period, and the lowest periodic priority is
used for tasks with periods that are greater than 2 standard deviations above the mean period.

B.1.2. Periodic Priorities Linear Methor. The Linear Method of assigning periodic priorities is
illustrated in Figure B.3. The basic idea is to assign period ranges to the different priorities using a straight
line equation generated by using the task with the longest period. Note that the periodic task with the
longest period is simply the task at the tail of the Tasks By_Period_Queue.

B-2

A Mean

2 Standard 2 Standard
Deviations Deviations
Below Mean Above Mean

Number of Tasks per Priority

Highest Lowest
Priority

Figure B.2 Periodic Priorities Using Normal Distribution

Maximum
Period

Highest Lowest
Priority

Figure B.3 Periodic Priorities Using Linear Method

The slope of the line generated by starting at the origin and proceeding to the maximum period (refer
to Figure B.3), is simply equal to the maximum period divided by the number of periodic priorities. Once
this slope is known, calculating the range of periods associated with each priority is a matter of plugging
each priority into the straight line equation y = mx, where x is the priority and m is the slope calculated

above and assigning the result as the maximum period for any task with that priority.

Unlike the Normal Distribution method, this method assumes that task periods is evenly distributed.
The result of using this method is to split the tasks into the different priority bins so that the higher priority
bins have fewer tasks than the lower priority bins.

B.1.3. Periodic Priorities Static Method. The Static method differs from the other two in that the
spread of periods assigned to each priority is defined before the system starts executing and does not
change while the system is executing. Figure B.4 below illustrates the Static Method. The static method is
clearly the most efficient, both in its memory requirements and its execution speed. The tradeoff, of course,

is dealing with widely varying task sets with widely varying periods.

To determine which method is best, an analysis of the results of each method will have to be made.
It is important to remember that the problem these methods are designed to handle is more tasks than
priorities. The initial guess is that given some random task set, the static method has the least distribution

of the tasks over the available priorities while the linear method has the best.

Aol bl 2 8 2 3 2 2 2 2
TV 1rvrvryrrrrrrnruy ™

Highest Lowest
Priority

Figure B.4 Periodic Prioritics Using Static Method

B4

B.2. Evaluation of Priority Assignment Methods

Perhaps the area of greatest misdirected effort was in the thought and development of the differing
methods to assign periodic priorities. The assumption was that assigning priorities to insure that the rate
monotonic theory held would be difficult when the number of tasks, exceeded the number of priorities.
Complicating the issue was the belief the unknown spread of periods might make it difficult to spread tasks
effectively over the available periods. This is indeed a problem if the periods for each priority are assigned
statically, but as was discovered, can be simply done dynamically.

Before the discussion of the results of testing the various methods, a note about the graphs included
in this section is necessary. First, there are two types of graphs included. The first type shows the period of
a task versus its assigned priority. The second graph types shows the number of tasks assigned to each
priority. In addition, there are four graphs for each priority assignment method; static, linear, normal
distribution, and a new method developed during this testing. One set of two of the graphs for each method
reflects the condition when both the mandatory part and the optional part of all the periodic tasks has been
scheduled (i.e. a non-overloaded condition). The other set of two reflects the condition when only the
mandatory part of some periodic tasks are scheduled (i.. an overload condition). Graphs showing the
middle condition, where some tasks are scheduled to execute both their mandatory and optional parts, and
some only are scheduled to execute their mandatory parts, are not included because the priority assignments
are identical to that of the all optional condition. The difference lies in the execution mode assigned each

task, not the priorities.

As mentioned above, results show a lot of unnecessary effort was put into this area. The belief that a
serious problem may develop if priority bins are defined statically is, however, well founded. Figure 6.2
thru Figure 6.5 clearly show the problem. Because, the size of each priority bin has been defined statically,
it obviously does not handle a dynamic set of tasks well. Note that in both Figure 6.3 and Figure 6.5 only a
small number of the available priorities are used. This can potentially lead to a significant problem when
using rate monotonic theory, essentially lowering the utilization levels needed to insure the tasks will

complete by their deadlines [Sha, 1989].

There are some factors that can be used to improve upon the static method. First, for this thesis,
periods are generated using a random number generator. In any “real™ application, periods would be

assigned based upon some definable criteria. It is clearly possibie to better match the static priorities to the

B-5

particular system. Note, however, that at any instant in time, it is still possible to have a very uneven
distribution of tasks to priorities. I would suggest abandoning static priority assignments altogether for any

continuation of the work in this thesis.

Figure B.9 thru Figure B.16 show a sample of the test results of the Linear and Normal Distribution
methods developed. In Figure B.9, Figure B.11, Figure B.13, and Figure B.15, the slope of the line shows
that indeed priorities are being assigned correctly (i.c. rate monotonically). However, Figure B.10, Figure
B.12, Figure B.14, and Figure B.16 show that the distribution of tasks to priorities, although much better
than the static method, is very uneven. The results of these distribution methods on run time performance
can not be accurately ascertained with the current implementation, but from the prospective of effective

utilization of available priorities, this approach is unacceptable.

Analysis of the graphs in Figure B.9 thru Figure B.16 lead to the development of a much simpler
priority assignment method. The “new” method simply takes the number of tasks and divides by the
number of priorities. The integer result of that division is then used to assign that number of tasks to each
bin. Any remaining tasks are assigned the lowest periodic priority. This approach eliminated the need to
maintain an array that held the allowable values for each priority given the current task set. In addition, the
calculation of that array was climinated. Thus, the “new’ method is simpler, more time efficient and more

space efficient. The results from a run using the new method are shown in Figure B.17 thru Figure B.20.

Note that there is problem still in the implementation when an overload condition occurs as shown
by the spread of priorities in Figure B.20. The problem stems f i using the fact that the routine to assign
the priorities uses the total number of periodic tasks currently in the system, instead of the number of
periodic tasks in the queue it is passed to assign priorities to. The fix is relatively simple and will be

implemented in future versions.

B-6

0
o

o
o O

Priority
[e) I ¢)}
(4]
220kl il nnliaaaniaantinansntinein

H
o

~
(&)

~
o

o

» O
a O O O

Tyrna LER LI LILER IR | LI) LR | LELIL I rr sy

0 1 2 3 4 5 6 7 8 9 10
Period (Seconds)

Figure B.5 Period vs. Priority, Static Method, All Optional

0 AREEREEEEemS
EETEBEETEEEEE
S

Prioritie

[74]

EEEEZTEE

Figure B.6 Tasks per Priority, Static Method, All Optional

B-7

~
o
T

LA k2 .5 0 4 E A4 L . AR A h
ke

D
o

[Hi “*'Ur_e.uaua
LA 2l TpvreyT T

& 8

Priority
w
o

n
o

-
o

o

0 1 2 3 4 5 6 7 8 9 10
Period (Seconds)

Figure B.7 Period vs. Priority, Static Method, Some Mandatory

120

-
o
Q

(o]
o

Task per Priority
(o))
o

40
20
0 T
= BEEEEBEEBEEREEEERBEEREE

Priorities

Figure B.8 Tasks per Priority, Static Method, Some Mandatory

©
o

((R o)) ~
Illl
|
F

N
o

F S

Tasks per Priority

o N A~ O ©

~N ® @
a O O

Priority
(o))
o O O

H
o On

;ﬁ

aesn daanalase adnaanaidni it et aaliniiati el

B Oy
o N A~ O

[| LA_L AL L LA i LA

LR B 2 | L LR L L L DL LB LA BLEL] LI B T rr AL LELELIR I LI

o
e
N

3 4 5 6 7 8 9 10
Period (Seconds)

Figure B.9 Period vs. Priority, Linear Method, All Optional

ZETEETEBTEERERECEE

Priorities

(0]
(2]
[84]
(ee]
(e8]

Figure B.10 Tasks per Priority, Linear Method, All Optional

B9

1

it PP
804 =
E +h+++l-+
702 g —
] +
60 ki S -
1 NP |
2 50 a2 TH
S,
T 403
30-

0 1 2 3 4 5 6 7 8 9 10
Period (Seconds)

Figure B.11 Period vs. Priority, Linear Method, Some Mandatory

120

100

(o]
o

H
o

Task per Priority
(0]
o

N
o

0 “I"H'F'*'I‘H“H'P'*h‘l‘ﬁ‘“ﬂ‘%‘l

EEEEEBE

[l
51]
53]
55]
57)
59)
61]
63]
67]
69]

71

St Gl el e Gt St e Gt e

Priorities

Figure B.12 Tasks per Priority, Linear Method, Some Mandatory

B-10

©
o

©
(&)

x

Priority (Seconds)
N O O N N
O o1 O O O 0 O

(43

H
(&)

FN SN I NI BTN TS TEARR NS TR ANV N INN TR I NI Illlllll

N
o

o
n
w
H
(4}
»
~J
(o]
((o]

10
Period

Figure B.13 Period vs. Priority, Normal Distribution Method, All Optional

Task per Priority

150)
152]
154]
(56}
18]
(6o}
(62]
[64]
(6]
i)
[70]
72)
[74]
[76)
(78]
(8o}
182)
(84)
(6] |
(e8]

Priorities

Figure B.14 Tasks per Priority, Normal Distribution Method, All Optional

o
o

s +.’++

(0]
o

~I
o

+
it

o

H-
L

Priority
H O

w

N

o O O O o O

-t

|Illl ALl TSN ETENPE NN INENI] LALL

o

Task per Priority

0 1 2 3 4 5 6 7 8 9

Period (Seconds)

Figure B.15 Period vs. Priority, Normal Distribution Method, Some Mandatory

el i8] e

Figure B.16 Tasks per Priority, Normal Distribution Method, Some Mandatory

B-12

cEeBBEEEEEBERBEEETEEEEIE

Awoud

”m
.
n7
..m -
+ 6
m 3
¥ 3
BB RARARERARAI T ”nU
28 3 e g

Period (Seconds)

Figure B.17 Period vs. Priority, New Method, All Optional

Figure B.18 Tasks per Priority, New Method, All Optional

B-13

] M| *w.L,,.
804 L&‘-w
+ Hih ¥
70 3 W&w
] +
60 3
£50
o
a 403
30]
204
10
0.
1 4 1
Period (Seconds)
Figure B.19 Period vs. Priority, New Method, Some Mandatory
90
80
70
£ 60
2
a 50
2 40
%
= 30
20
10
0 I
~ e B EEBEEEEECEEEEEEEEEE

Figure B.20 Tasks per Priority, New Method, Some Mandatory

B-14

Appendix C. IRTS Demonstration System User’s Guide

This appendix explains how to compile and use the IRTS feasibility demonstration code. The first
section details the system requirements, recommended library structure, and compilation order. The second
section contains the source for the feasibility demonstration system. The source code is included for
reference only and is not intended to be “production quality code”. Chapter 6 of this thesis has pointed out
a number of deficiencies and recommended the changing some of the data structures used. Any future

work should address these issues before continuing to use the demonstration code.

C.1 Svstem Requirements and Compilation Order

The IRTS demonstration system requires Verdix Ada 6.0 in order to compile. It uses the Verdix
supplied task management procedures Suspend_Task, Resume_Task, and Set_Priority. To use these
features, it is necessary to link in the Verdix library V_XTasking. In addition, CLIPS/Ada is used as the
Reasoning Process and also must be compiled and linked to the users library. Also, the Booch component
files Storage_Manager_Sequential, Deque_Priority_Balking_Sequential_Unbounded_Managed_Iterator,
and Monitor are required. Figure C.1 shows the recommend directory structure.

Booch

Figure C.1 Recommended Directory Structure for IRTS Demonstration System

After creating a new Verdix Ada Library in the IRTS Source Code directory, modify the file
“ada.lib” to reflect the locations of CLIPS/Ada and the required Booch components. In addition, the

C-1

“vads_exec” library should be linked in. An example ada.lib file after these modifications should look as

follows:

tada library

ADAPATH= /usr/vads6 0/verdixlib /usr/vads6é 0/standard /usr/vadsé_0/vads_exec

ADAPATH= /home/hawkeye3/mawhelan/Booch /home/hawkeye3/mawhelan/CLIPS_Ada

Note that the third line reflects user specific locations for the CLIPS/Ada source code and Booch

components. These locations should reflect the actual locations for the users directory structure.

To compile the IRTS demonstration system, first compile the CLIPS/Ada source code (refer to the

CLIPS/Ada manual) and the required Booch components. After those files have been successfully

compiled, the IRTS files should be compiled in the following order:

random.a
global_data_types_spec.a
support_functions.a
task_control_buffer_spec.a
periodic_tasks_spec.a
any_time_tasks_spec.a
singular_tasks_spec.a
task_manager_spec.a
reasoning_process_spec.a
io_process_spec.a
task_control_buffer_body.a
periodic_tasks_body.a
any_time_tasks_body.a
singular_tasks_body.a
task_manager_body.a
userfun_body.a
reasoning_process_body.a
io_process_body.a
task_manager.a

get_tcb.a

find_tcb.a

feasible.a
p_tasks_<_p_priorities.a
p_tasks_>_p_priorities.a
pp_by_importance.a
some_periodics_optional.a
assign_periodic_priorities.a
schedule.a

un_schedule.a
non_periodic_completed.a
modify.a
modified_feasible.a
dispatch_tasks.a
print_periodic_tasks.a
print_non_periodic_tasks.a
print_test_times.a

record_times.a

The IRTS demonstration system makes use of a file called “test_rp_rules.clp”. The file contains the

CLIPS/Ada rules that drive the Reasoning Process. In addition to all the functions available in CLIPS/Ada,

a number of additional functions used to communicate with the Task Manager are available. The Task

Manager functions are as follows (all tirnes are given as a real number of seconds from midnight):

e (add_task <display flag> <task type> <procedure id> <period> <deadline>

<starttime> <importance>) The display flag is a boolean value that instructs
the task to print out its start and stop times while executing. task type is either any-time,
periodic, or singular. procedure id is the identifier of the procedure within the task type package
that this task shell is to use. period is the value to be used as the period. The use of the deadline
value depends on the task type. If the task type is periodic, then the deadline is the stop time for
the periodic task; otherwise, the deadline is the time by which a task must provide an answer.
start time is the time when the task is eligible to start execution. importance is the task’s global
relevance in relation to all other tasks. The procedure returns an integer value that represents the
task’s id. It must be used to refer to the task whenever the modify or remove procedures are
used.

s (modify task <display flag> <period> <deadline> <starttime> <importance> <task id>)
The parameters should reflect the new values desired. The old values should be used for those

parameters that are not to be changed.

* (remove_task <task id>) This procedure simply removes the specified task from the currently

active set.

e (new periodic utilization <value>) value is the new amount of processor utilization to allot for

periodic tasks. It should range between 0.0 and 1.0.

In addition to these procedures, the Task Manager also communicates with the Reasoning Process by
asserting facts into the CLIPS/Ada fact base. The Task Manager signals infeasible tasks, missed deadlines,
completed tasks, and its current status through facts. The facts asserted by the Task Manager have the

following forms:

¢ (infeasible_task <task id>) This fact is asserted whenever a modify or add operation has tried

to assert an infeasible task as described in Chapter 5.

s (missed _deadline <task id> <time>) This fact is asserted whenever a periodic task does not
complete its execution during its period or a non-periodic task fails to complete its execution by

its deadline. time is the time at which the missed deadline was detected.

* (task_manager status <time> <PU> <MU> <OU> <RU> <periodic condition>

<f#iperiodic tasks> <#non-periodic tasks>) time is the time at which
this status report was generated. PU is the current periodic utilization. MU is the utilization of
the mandatory parts of the current periodic task set. QU is the utilization of the optional parts of
the current periodic task set. RU is the utilization required given the current number of periodic
tasks and the current budgeted utilization. periodic condition is either SOME_MANDATORY,
SOME_OPTIONAL, or ALL_OPTIONAL as described in Chapter 5. #periodic tasks and
#non-periodic tasks are the number of currently active tasks of each type. A status report is sent
after an Add_Task, Niodify_Task, Remove_Task, or Change_Periodic_Utilization entry is
called.

C.2 Source Code

The source code developed for this research effort follows. The purpose of its inclusion is to allow
future researchers to see a concrete example of how the architecture outlined in this thesis has been
implemented. No attempt has been made to make the code robust or tuned for optimal performance and no
such claims are made. The source code should be used as a guide for any future research efforts and not as

a fully developed Intelligent Real-Time System.

C4

{81equMu’ Wopue1 pue
fwopuer pue
fm / peas uinjex
‘31 pue
w + 3891 =: poos
osTo
{3893 =: pees
usy3y 90 < 1893 3T
ITY « T -~ O » © =@ 3803
ity v b - pees =: o7
{{ (b 7 pees)zebejur)jeor3; =: TY

utbeq
f3e073 :3801 ‘TY ‘07
e pow m - {10°9€8Z =: 3IEBOTJ 3IUBIZUOD :I

B ATP W -- 10°ELLLTT 30T 3jue3sucd :b
20 LVIEBYLYTZ =t €OTI 3ueISUOd :w
£0°L0B9T =: 3ILOTF 3JUEIBUGD :e

§T 3POTJ UIN3I@I WOPUEX UOTIdUNF

8T sioqunu wopuex Apoq ebexoed
!sIequmu wopuel pue

e --
eyl £q 3185 oq ued BTYI 10 -- {EGLEBSEGIZESTHI'E =i 32OTF :pees

{380TJ UIN3@X WOpUEI UOTIdUNY

1 obed uo ueath ST JTOS3IT WyiTIOOTE acu --

9
1021-Z611 .mw (88 320) 0T# T€ ToA ‘WOVD
LPUT} 03 paey eie seuc poob :srojereued equnu wopuey, WOxJ kuamvm -

81 szequnyu wopuex ebeyoed
it 2 2 R RS R R T Y Y Y Y Ry Yy Yy Y Y Y RS NN YN YY
e _ -

-— s1ecumy wopuey =
i -
Rl R e Rl I N L Y R Y R Y E S S R R TR TR R RS R RN E S RSN Y Sl

¢ sedA1l ejeq T®qOTH pue

f (INIAZ UVINONIS ‘INIAT GWIL ANY ‘INIAT 0IQOI¥Id) o7 edA1 jueaz edia
_ ¢ (TYNOILdQ TIV
*TYNOIL4O AWOS ‘ANOLVANVW AWOS) 8T odAl uoT3iTpuo) otpoTieg edi3

! (UVINONIS ‘WIL ANV ‘DIQOINEd) 8T edAL pury ysel edki

‘938812 07 weysis oyl 103 eTqelrese --
8T eyl ysel L1eae jo eweu eyl eaey o3 speeu odi3 uorjereamue ITYL

¢ (Teuotidp ‘Axojepuer) 8T edAl epor edi3
1 sedii ejeq TeqoTo ebeyoed

et P XY ER ST E RS Y Y S RS YR Y R Y A R R S I S RS S SRS VSRS S YRR R R R R Y S YR Y Y R
—a - _ .
—-—u sedAy e3eq Teqory ebeyoeg -
— .-
i E TR R Y R R R R R S A S R R R R S R RS RS S S F RS S SRR SRR XN T XY Y St

£S1¥I pue
! @27TeTITUI 2ebeuey ysel ebeyded iebeuey xsel
! @ZTTBTITUI"§86001J O1°@beyded Sse001d Ol
! PZTTETITUI 8580014 buTuoseey:sbeyoed sseooxg buTtuosesy
uth
! (66) Katzorag ewbex
ST $ly¥1 einpeocoxad

H Oucxumm uommnux Xsel
‘ebeyoeg | 888001g mcunounom
‘ebeyoed sse001g OI

‘01" IXOL YITA

et Ty T Yy Y Yy Yy Yy Yy Yy Y YTy Bl

||c .-
- 0'9 UOTSI®A TPY XTPIGA :EDVAONVI «--
—— .-
“=» ueteysm ‘Y TOBRYDTN :¥OHIAV ==
— -
-~ 0°1 :ROIS¥3A L
—— .
. 661 Ioquedeq [:JIVQE -~
— g
et} SI¥I TILIL [
— i
it B Y 2 S S R R R Y A A T AT R R NS SRR Y Y Y Y Y Sl
— P
-y weysAs ewrl-Teey JuebrTTOIUl .-
——. -

BANEAFEINIABIINEANININIINIRS cssnurny [T TR YTY St

CTERSANNRSENIIBIINEES

C-5

- ewty Auy OTIOUeD XQ0E MSVL -

! (((00°01) <= 0T
‘0 00°6) <= 6
‘¢ 00°7) <= 8
‘C00°T) <= L
‘(SL'0) <= 9
‘€050) <= §
‘(S2°0) <= ¥
‘C01°0) <= €
‘(50°0) <= ¢
‘€ 00°T) <= T) <= f(euorydo
‘(00170) <= 01

‘{ 5L0°0) <= 6

‘(050°0) <= 8

‘(S20°0) <= L

‘(01070) <= 9

‘€ §00°0) <= S

‘L v00"Q) <= ¥

‘(€00°0) <= €

€200°0) <= T -
‘{ 1°0) <= 1) <= Kzojepuer) =: edAl suorjeang : suoTjeINng

it SNOILWNW1D3d 1OAr80 --

a1”yse] we3shs <= xepul
‘od&L” noqnu«un> euwtT] Auy <= wme3r)
1833ng TOI3UOH YSe] AU ST iejjnd saTqeties ewrl Auy ebeyoed

! uot3eang jo (no&»s aart] Auy
.0&>a epon ' sodAl ejeq Teqoro) Aexxe st ed] suorieang edA3

- SNOILWVYVIDAA IdAL -

8T sysel ewrl Auy Apoq ebeyoed

¢ buTYSERIX A
‘ebeyoeg . uoowcaz Asel
‘suotyoung 3roddng
‘zepuetes esn
H uuquukx A
‘ebexoed_rebeuen_xsel
‘1ejjng TOT3IUCD Mmaa
‘suoT3ioung 3xoddng
‘1epuere) Yita
e F T EY EE XS R RS R R R A R PR R Y PN R R RN R NS AN RS SRS R SRR R R R R R LYY Tt

- 09 UOTSISA EPY XTPISA (IDVAONWT »—-
- weTeys ‘Y TOPYSTH NOHIOY u--
= 0°1 :NOISEEA s--
- 2661 Toqueded 1 :3I¥A +--
= sysel euty Au¥ FTLIL ol
Hun Apog ebeyoeg sysel ewtl Auy nuu
it 3 -

Il Y Yy Yy Yy T Yy Y Lt

¢ syse] eutl Auy pue
! (gl ysel weishs ut : gI Asel oyl) serqeries eacwey sinpedoxd

4 { g1 ysel-weisis ur al ysel_eyl
¢ edAyl merqeries ewtl AUY UT : SeTqETIEA Oyl) seTqeTie) @I035 einpesord

¢ (uoTjeing 3nc : uoTieang_ido

! uotjeIng 3INC uotjeang_uey

! g1 %sel we3shs ino ar_ysel eyl

! uum ysel_euwr] Auy Ino 234 yTel eyl

¢ odfj sefqeTies ewTl AUy UT : SeTqeTies eyl) e3ee1) einpeooid

¢ ewtl Auy oTieuss ssedoe 8T 1314 ysel ewtl Auy ediy

¢ emty Auy otieues pue
¢! (uoT3eINg 3INOC @ :OauNunnluno
¢ uoryeang 3Ino : :Oaumujn wen
edA] serqeTIEs oaaa TAuy ut : serqeTiep eyl)_seyqetiep ebueyd Ai3jue
! (uorjeIng 3INO : UOTIEING_ _3do
! uoTjerng 3NO :0auMu=a ueR

{ Q17 ysel weisis 3Ino a1 ysel eyl
! adh1 seTqeTIEA WYL AUV Ut seTqetIes oyl) eziTeratul Aijue
8T ewty Auy orieuss edAi ymea

- NOTIVHVIOSQ ewTl Auy oTIeuss FdAL MSVL --

odA1 epol - sedAl ejeq Teqoo : OpOR
¢ ANYL =: ueatoog : SNUTIUOD
dST¥d =: ueefoog : Aetdsig
¢ 18bejur puty
paooex

u« oahkluowuaaun> cﬂda >=<on>u
¢ 7' *1 ebuezr 1sbeiju] st sedhy ewry Auy ediiqns

- SNOILWYVID3IA IdAL --

s1 sysel ewr] Auy efeyded

sedi1 ejeq TeqOTS
_ ‘we3sds esn

sodi1 eieq TeqOTy
‘weIsAS YT
CTEABNRNANNS YNNI TS NARRR NN TENB AN ISR BB A SN ARSI EGEIIRIN BN B RN IR
— .-
T 0°9 UOTSI@A ¥DY XTPIOBA :IDVONVT ==
——a -
e ueTeym 'Y TOPUOTW YOHLOV -
. .-
il 0°'T :NOISYW3A .=

. 2661 1equedeq | :3IIVd s--

--» sysel ouwT) AUV ITILIL o--

- [Rpu.

il XY Y Y Y Y Y R Y R R A R Y R R RN R RN S S A A RS R S A S S RS R A AR R R R R R A S X

—— _ _ .
-— oedg ebexoeg sysey emt] Auy .-
——. -

Ry Yy Y Y R RN Y Y

C-6

?

H uxuaa ewt] Auy pue

! se[qeTiEA 8AOWeY pus
f (QI Asel Oyl <= Xepul eyl) We3l eaowey-1ejjnd SOTqETIEA ewTl Auy

utb
T (g1 ysel-we3isis uY : (I ysel eyl) seTqeTies eacwey Ousuouonu

. seTqeTies esowey FUNAIIONd -

! sefqeries 103§ pue
! (Q1 YSel Oyl <= XepuI_eyy
‘setqeTIRA Oyl <= We3l eyl) we3l Ingd‘iejngd sejqeTies eurrl Auy

utbaq
a1 ysel eyl

81 (a1 ysel'weisAs ur
seTqeTIEp Oyl) seTqeTIes e103§ exnpesod

! odAl seTqeTiep ewTl Auy uf

- saTqeTIEA” 03035 FYNGIOONd --

! @3jge1) pue
{134 duel =: 13d ySel eyl
! (uoyjeang 3do ‘uctieing_ueq
‘ar ysel eyl ‘selqetie) eyl) OzTTeTITUI 134 duey
¢ ewtl Auy OTieues meu =: 134 duep
utbeq

! 1387 xuua eutl Auy : 134 duer
UOTIBING | 3do
uoT3eINg_UEH
aI_ysel_eyl
13d ysel_8yl
seTqeTies eyl) e3jeex) eanpeooid

8T (uovjeang 3Ino

! wotzeang Imo

¢ g1 xnaa we3sks 3no

¢ 134 ysel_ewyl_Auy 3Ino

¢ edK] mseTqeTIes PWTL AuUY UT

- 83881) IANAIO0Hd -

¢ swrl Auy oTa0uUey pue
¢ doot pue
f (QU %sel AW) ysel puedsng:BuryselX A
‘pesn Hurteq jou ueym =
@3e18 pepuedsns eyl 03 TTOY® XYSEl BY3 UINIB1 slemTy -

{ 3oeTes pue
! JT pue
¢ dooT pue
! 37 pus
! 310
! 3T pue

{ teuorado_‘qr Ty el ax
~0Eaa do3s ‘emrT] 3xBas ‘eurl Auy) ewty 1939T1bey
:onu Ketdstq serqetzes AW 3JT
¢ JyDOTD AEPUSTERD =: OWT Qoum

*A371Tend uorinyos uodn peseq peppe --

oq PINOY® JUOTITPUGS I3Y3l0 “dISTVd 03 --
onutiuod s3jes AT3torTdxe iebeuey xsel eyi --
3T ST uoTatpuoo burddols A(uc eyz mou ybTy --

_esTe
! (a1 xsel AR) ejerdwoy ysel:xebeuey ysey

o70ko e pejerdwoo xebeuey xsel A3TioN -

((puTy sefqeries AW

‘Teuotado) suotijeang) doot Keyeq uny _
ueyl eNUIIUCH SOTqeTIRA AW IT

! gryser AW)
well 189 1e3jng selqeTivA euTl Auy =: seTqeries AW
doot
‘do3s o3 pTo3 TTiun 3zed Teuorido eyl @Inoexe moN --

¢ (a1 yeel AW) e3erdwoy ysel' 1ebeuey ysel
reje7dwoo s71 31ed =
K1o7epuen ey3 3ey3y 1ebeuey ysel eyz A3TIoN -

{ 3T pue
!t (Kiojepuer ‘a1 ysey " AW
‘gut] dois ‘ewt] 3aeI§ ‘ewty AUy) ewtl uounaooz
Jueus KeTdsTq-seTqeTIeA AW JT
{ YoOTD'IepuLTe) =: ewt] doig
! ((PUm’ nOa TIRA >z
103epue) suoraeang) dooy KeTeq ::z

31ed A1ojepurm eyl @3noexe 3IBITJ -
ueyly oscﬂucou.noannquu>Hmz 3T
£ qrasel AN)
w31 389 18330d mbaﬂﬂaum> ouT] Auy =: seTqeTies AW
YD0TD’ IepueTe) =: owTl IIE3S
*£yuo sesodind Aeydstp pue —-
butbbnqep 103 pesn eie ewrl dols pue ewTl 3Ie3§ -

esTe
! seorqeTIEA oucauu pue
{ (puty'serqeTies_oyl ‘ TeuoTidp) suorieang =: uortieang_sdo
! (purd-serqeties oyl ‘Axojepuey) suotieng =: :oauausn uen
! satqeties eyl =: safqetien AW
op (uorjeang 3no : uotjexang_ido
!_uoTjeang 3no uoT3eINg_ueR
¢ odAl serqeTiEA emT] Auy UT : seTqeTiep eyl)
seTqeTie) ebueys 3deooe
J0eTes
‘ewT3 4D eumsuod Isnw 3T ‘xse]l ,Teex, e burjernurs jo sesodind --
oy3 103 ‘ewry ndd Aue eumsuod jou pPINOM 3T pu®R Xse3 ITYI —-
puedsns 03 we3sis burtieiedo eyl MOTT® PTNOA Juewele3s Aeyep v —-
'jquewo3els ,AeTep, ' ION Pu® pesn #7 dooy eTTym, ® eyl @ION --

doot

¢ (a1 ¥sel AW) ysel puedsng-buryselx A

! ®zTTeTITUI pue
¢ (pury-seTqeries eyl ‘ Teuorido) suoTieing =: uoTieing_3do
mAvcaxmoannaum>onh~>uoumv=mzvncoaku=o|"=0qum»=n=u:

! goTqerIes eyl seTqetIes AW
f Q1 yser a1 ysel eyl
{ ysel Juerin) - burysEIX A =: al xsel
op (cOﬂuuu:n o : uoyieanq _3do
! uorjeang 3no : uoTeINnd_UEK
! a1 yser- 50uu>m 3Ino : a1 ysel_eyl
¢ edfl serqetraes euTl AUy uT : seTqeries eyl) ezrretatul 3deooe
utbeq
¢ odAy™ uoﬂnnaua> ewt] Auy n.aﬁMaua>|>:
¢ g1 ysel-we3sis a1 Ysel AW

! ewT] " IEpUGTED : owt] doyg
! ewT]'IEpPUOTED eutr] IS

sT ewt] Auy oTaeuey Apoq ysel

‘aje3s pepuadsns 8yl UT ST YSBI OY3I ‘O8N UT 30U UeyM

euTy° IEpUeTe) : eWT] 3IIEIS

ST oTpovied otieusy Apoq yvey

! (((0v0°0) <= 01
‘(0E0°0) <= 6
‘€ 020°0) <= 8
‘{ S10°0) <= L
‘ 010°0) <= 9
‘(S00°0) <= ¢
‘(¥00°0) <= ¥
‘{ €00°0) <= €
‘(2000) <= ¢
“(100°0) <= 1) <= Teuorido
‘¢(0010°0) <= 01
‘(0600°0) <= 6
‘(0800°0) <= 8
‘(. SL00'0) <= L
‘(0500°0) <= 9
‘(§200°0) <= G
‘(0200°0) <= ¢
‘(S100°0) <= ¢
‘{ 0T00°0) <= 2 -
‘{ G000°0) <= T) <= AxojepueR) =a: odfl suorjeing : suoTjeing

-- SNOIIWVEWIOIA LDALHO -

¢ (qI ysel'welsks <= xepul
‘odf1 seTqeTIBA OTPOTIdd <= We3I)
Ieyjng TOIIUCH YSel meu ST Xejjng se[qerIes oTpPoTied ebeyoed

¢ uorjeang 3o (uWﬁ»h oTpOTIeg
‘od&1 epon - sedL1ejeq Teqoro) Aexxe st edLy suorjeang ediy

- SNOIIWIVIOAT IdAL -

sT sysel otporxed Apoq ebeyoed

! puryselX A

~m:oﬁoc:m " 310ddng

_ _‘we3sis

‘sedAl eieq TeqoTd
‘IepueTe) 8sn

¢ purxselx A

.mco~uuc=m uuoansm

‘ze33nd 10I3U0)” ySEL

_ _‘ueysis

*sedA1 e3eq TeqoTd
‘IEpUSTED YITM
et R R A LR R E R RS R R RS AR R R A S S S R R RS S R RS R R R RS RS XS R AL L XY Dt
— o
- 0°9 UOTSIDA epPY XTPISA HOVNONYI Ll
~== L I
- ueTsyMm 'Y TOBYDTH :¥OHINY ==
s »=
- 0°7 *NOISY3A ==
-=» ==
e 661 19quedeq [:JIVG »—-
— P
- sysel OTpoTied IFILIL «--
— .-
it PR R RS SR R S R R R R R R A R R RS R L R R RS S RS R R R R R R R R L R R
— _ -
- Apog ebexoeg sysel otporiad .-
——. P
g S X R RS R S R R A R R R R R R R RS R RS S AR R R A R R R R R R R R R RS S 2 RS R R Y R

! sysel oTpoTIed pue
{ (g1 ysel-we3sks ur : QI ¥Sel Oyl) seTqeties eaowey einpedoid

{ (g1 ysep-we3isAs ur @ QI ysel eyl
! odf} seTqeTiEA OTPOTIEd UT : seTqeTiep oyl) seTqeTies ©x03§ eanpecoid

¢ (uoTiBING 3INO :oauauﬂnluuo

_ uot3jeang Ino uotaeIng_uew

gr asel-we3sks 3no ar_ysei_eyy

134 ysel_DOTPOoTIed 3Ino 134 ysel_eyl
! adfl seTqerties oTporied UT : seTqeTiej eyl) ©3wei) exnpesoid

Jon onon

{ oTpotied otieues ssedde T 13d XSel OTpoTied ediy

! oTpoTied oTieus) pue
¢ (uotvaeang INO : uworIeINnq_ ado
! yorjeang Ino : noauMuao uey
eodA1 seTqeries OTpoTI®d ur ¢ seTqeTIes Oyl)_serqeries ebueys Aijue
¢ (uotjeang 3In0 : uoTIEING | ado
uorT3eINg WO @ UOTIRANG_UEH
ar ysel we3ishs no @ a1 ysey_ eyl
! odAl serqeTieA OTPOTI®d UT : SeTqeTiep eyl) ezyreratul Axjue
ST OTPOtTi9d oTieues ediy yses

[T

- NOILWVMYIOQ dTporied oTisues 33AL WSVL --

! paooea pue

! od&y epon:sedil e3eq TEqOTH OpOR
¢ zebejur : PUTH
AsI¥d =: ueeyood : Aerdstg
¢ gN¥] =: ue@yoOg : BNUTIUO)
paovex

81 odLy quMmauu> otTpoTied edAa
moH..Houcuuuomounuwauhkuavoanomonhunnm

- SNOILWNYIOIQ IdAL --

ST sysel oTporieg ebeyoed
fsadk1 e3jeq Teqols
‘wo3ISAS Yatm
bt YRR REES EE Y P EE R R Y R R R S RS R R R R R R R RS R R R RS RS R NS R R R S S N X

HH” 0°9 UOT8I®A BDY XTPIGA (JOVNONVI ”HH
HHH ueTeyM VY TOBYSTW :YOHIAV ”HH
-t 0°1 :NOISEA »--
- 2661 equeceq [3N +--
- sysel OTPOTIOd IFILIL e--
H“n oeds ebeyoeg sysel otporied ”Hu
-—u -

T T Y Ty Y

C-8

! sysel oTpoTieqd pue

_ _ _ _ _! selqeragn eaouwey pue

* (arysesTeus <= xopuleyl) We3 eAowey"i0j3ng SOTqEIIeA OTPOTIed
ur

8T (@I YFel-weisAs uT : QI ysel eyl) SeTqeTIe) eAowey 8INPesol

— seTqeTIRA eAcued FUNAII0Nd -

_ _ - ! seTqeTIEp 81038 puUe
{(QI ysel @YL <= Xepuj eyl _ _ -
‘gsorqeTies oyl <= W3l eyl) well Ind-iejyng seTqetiep OfporTied 5
_ - - utbeq
8T (ar ysel-we3sAs ur : QI ysel 8yl _
¢ odAl seyqeriep OTPOTIed UT : seTqeTieA oyl) seTqeTies e103s einpecoad

- seTqeTIEA 91015 FUNAIDIOEA --

! e3ee1) pue
_ f 133 dwey =: 134 yseL oYl
LN | :oﬂ..uuumbluao ‘uorieang Uep _
‘qr Ysel eyl ‘serqeriejs eyl) ezTTeTITUI 134 dwel
{ oTPOTI84d OTIBUSY MOU =: I3d dwel
utbeq

¢ 234 ysel oTpotied : 134 dwel

uvoraeing_3do

8T (uoT3jeang 3ano %
uoT3eINg_URH

_ ¢ uvorjeang Ino |
f g1 ysel-we3lshs 3ano aI_xsel_eyl
{ 134 y8e]_OTPOTied Ino 234 ysel_eyl
! odA1l sefqeTiEp OTPOTI®d UT : SeTqeTies eyl) e3jeex) einpecoad

- @3ee1) IYNUIO0Ud -

! oTpoTied OTieuey pue
- - _ ¢ doot pue

¢ (qI yoel AW) ymel puedsng buryselx A

¢ 00708 pue
! 37 pue

¢ (epon-serqetaey AR ‘Al Yeel AW .
‘out] do3s ‘ewT] 3TeIS ‘OTPoTied) ewry ieistbey

ueyy Aerdstq-seyqeries AW 3T
! Y007 2epueTe) =: 8wyl do3is
! esed pue

PuUTH' B@TqeTIEA AN ‘¢ teuotado) suorieang) doo7 Aeteq uny

puTy' seTqeTIes AW ‘Axojepuey) suorieing) doo AeTeq uny
<= TRUOTIdO ueyR

puty’seTqeTIeA AH ‘Al0jBpuel) suoTieang) dool Aereq uny
<= Aiojepuey ueys
_ _ BY epol°sOTqeTIeA AR esed
f(aryeel AW) _ _ _
we3l 3e9°1e3yng seTqeTIes OTPOTIed =: SOTqeTIeA AR
¢ YOOTD' IepueTe) =: ATl 3IL3S
osTe
_ ! goTqeTIEA ObURY) pUG
(puTy'serqeries_eyl ‘ Teuotidp) suorieing =: uoreing 3ido
(puTy'seTqerres eyl ‘Ai103epuey) SUOTIBING =: UOTITING UeK
! seTgeriep Oyl =: soTqETIEA AW
op (uor3eing no : uorjeanq_3ido
! uoT3jeIn@ INO ! UOTIEANG UEK

_ ¢ odA1 seTqRTIEA OTPOTISG
ur : seygeries eyl) serqeries ebueyd 3desoce

JoeTes
cewT3 Q4D ewnsuod isnw 3T ‘Ysel ,[eex, e burjernurs jo sesodand -
8yl 103 -ewT3 4D Aue eumsUOD 30U PTNOA IT pue Ysel sTYJ --
puedsns o3 we3isis Buriezedo oyl moTTe pInoa juswejels Aefep ¥ --
-jueweje3s ,AeTep, ® LON pue pesn st ,dooT eTTym, ® eyl O3O0N --
‘uyotyeIng --
TeuoT3do uT entea eyy o3 Tenbe sT selsen owry eyj ueyy ‘reuorido --
03 308 ST OTqETILA SPOW‘'STOIJU0) eyl JI -uotieang Aiojepuel Jo --
enTea ey3 o3 Tenbe ST pejses owry eyl ueys ‘Axojepuem 03 308 ST --
OYQeTIPA OPOW ETOIUCD BY3 FI °STOIJU0) ©INIONIS PIODOS: ey3 --
UT peurejuod SeTqETIRA Oy} UT peutjep se ouwry soisea KAydurs -
dool STyl mou 3Ing ei1ey ob prnom ejels Ive(qo uo xd8Yd --

doot
¢ (ar x®el AW) ySel puedsng-buryseix A

! @2TTETATUI pue
¢ (pury'selqeries_eyl ‘ Teuorido) suoTieIing =: uoryeang_ido
! (puTy'seTqeTIep oyl ‘AI0IepUEl) SUOTIRANG =: UOTIRANg UEH
{ soTqeliep Oyl =: sorqetIep AW
- gy ysel Aj =: aI jyoEl eyl
¢ ysel juexznn-buryseIxX A =: (I yFel
op (uoraeang 3no : uoTIeIng 3do
_ ! uoTyean@ 3NO : UOTIRING_UER
_ ! ar ysel-we3sAs 3no : QI yse) eyl
¢ edfy seTqeTIEA OTPOTI8d UT : SoTqetiep eyl) ezTTeT3Tul idecoe

‘epY XTpIep 03 dYjToeds --
8T TTe0 eanpecoxd sTYI eyl OION -@3ndexe 031 ysel 8Tyl AqQ --
pepeeu siejewexed 8yl 3senbex ued I o8 xequnu (I NSVI Aw 389 —-

cqomm

¢ edA] weTqeTiEA OTPOTIed : SeTqeTIeA AN
4

! qr ysel-welshs : QI ySel AW
! suy]'Iepuere) :

eurty doig

! g1 ysewy-uwe3sAs : qr ysel AW
! oWty X¥ JueTe) ety do3s
! ewTy-inpusTes ! ewWTl 3Ie3S

87 zernbuts oTieuss Apoq ysel

- 1eTnbuTs oTI0UeY AQ0d MSVL --

£ ({({ 00°0T) <= 0T
‘C00°G) <= 6
‘ 00°C) <~ 8
‘00T) <=
‘{ GL'0) <= 9
‘€ 0570) <= §
‘(G20) <= ¥
‘C01°0) <= €
‘(60°0) <= T
‘C 10°0) <= 1) <= TreuoT3ydo
‘{(0001°0) <= 0T
‘(€ 0050°0) <= 6
‘¢ 00T0°0) <= 8
‘{ SL00°0) <= [
‘(0500°0) <= 9
‘(GZ0O0°0) <= §
‘(020070) <= ¥
‘(ST00°0) <= €
‘(0T00°0) <= T -
‘{ G000°0) <= 1) <= Azojepuely) =: edLl suoTiezng : suoTieINng

¢ (a1 xuas we3sis <= xepul
‘edAl seTqeYIeA 1eTnHUTS <= wWOIT)
1033ng TOIUOY YSE] meu ST 1ejjug seTqerie) xeTnburs ebeyoed

! uot3eang jo (sediy zernburg
*edK1 epon- sedA1 eyeq TeqoTo) Aeire st adil suotieing edka

- SNOTLYYVYIOHEA JdAL -

8T sysel aeTnburs Apoq ebexoed

ocaxnnex A
‘ebeyoeg . uooacwtounqs

‘suoyryoung 3xoddns
‘iepueTe) esn

onaxuahx A

‘ebeyoeg_. uoomcm: [ysey

‘1e3yng T013U0) ysel

‘suoTyoung 3xoddns
‘Iepuetel YiTa
it XX 22 R R R R Y R Y Y R Y Y S S R Y S NS T YN SRR Y Y St
— .-—
== (09 UOTSIBA EBPY XTPISA (JATYAONYI »--
— o
it uetoym ‘Y TORYOTW :YOHLOY »--
—— .-
- 0°T :NOISWIA »—-
— -——
. 2661 1oquedsq T :3I¥A +--
— _ -
--» syse] rernburs :FTLIL -~
== -
It Ly ey Yy Y Yy PR R YT Y S
—— A
- Apog ebeyoeg sysel reTnburs =
—— -
hedad 2 E A A S R R A R R R R R R Y R R S E R R RS NN SRR SRS NSNS R R L Y S

¢ syse]l aernbuts pue
! (ar ysel-we3sks ur : QI Yfel 6yl) seqeTieA eacwsy einpedoxd

¢ (a1 xsel-we3sks ut
¢ odAi seTqerze) zernbuys ut

a1 ysel_eyy
seTqeTIEA Oyl) SeTqerie) e1ols eanpedoxd

¢ (vorjeang 3no : uotjexng_3do

{ uoTieIng 3o : uOTjeING_UeH

! g1 yser-we3sAs Ino : QI_ysey eyl

! uum yse]l_xeTnbuTg N0 : 134 ysel eyl

! adk] seTqeraep zeTnbuts ut seTqeTIRA OYL) e3eex) einpedoid

{ zernbuys OYi0ueH sseOOE BT 13d YBeY uﬂa:@:um odky
- ¢ rernbutg OTIeueH pue
¢ (uoTjeang 3no : uotryeang_3do
{_uotjeang 3no : uoTIeAN]_UER
edA1 seTqetieA IBTNOUTS UT : sOTqETIEA Yl) _seTqeries ebueyd Kijue
{ (uoTjeIng 3INO uot3ezng_3do
{ uotjeang 3NO uotieIng_ueq
! ar ysel -welsks 3Ino al Ysej_eyl
odA1 serqeTies xefnburs ut : seTqeTIeA BYL) ezTTeTITUL Ax3ue
8T Jeynburs oTieuen edi3 yse:y

== NOIIVYVIOAQ XeTnbUTS OTieuey FdAL NSV --

¢ paodoex pue
- _ ¢ zebejur : PuTY
odA} epow - sedAl ejeq TeqoTo : OpOR
! ANYL =: UesTOOg : 8nutTIUC)
! FSTYJ =: ueeToog : Kerdstqg
paooex
8t edky noaMaauu> , xeTnburs ed&3
¢ 011 ebuex xebejur sT sedAl xernbuts edhaqns

- SNOIIVEVYIDAA IdAL -

8T sysey_sernburs ebexoed
sedA1 ®jeq TeqoTH
‘weisAs esn
sedA1 ®3eq TeqOTD
‘we3sAs yita
et 22 T XTI S T Y R SRR R RS R RS S S RN RSN SRR RS XSS RS NN Y Y Y L Sl
— o—
- 0°9 UOTSISA EPY XTPIGA :FAOVAINVT «--
— -
T ueTeym VY TOBYDTH YOHIAY «--
—— -
T 0°T *NOIS¥3IA =--
— —
s 2661 1oqmedeq 1 :3Iva =—-
— _ .
— sysel ze(nbutrs FILIL »—-

- -—

it S X RS IR S S A R R R P RN R R RS S S RS R RSN N RSN SRR ESES RS RS R RN Y Y Sl
e -
- oeds ebexoeg sysey zeraburg -
— —-
a2 R R R R A R R R R Y R R R R R S R RS R RN S SN S S S ER R R R AR RS Y NN Y N Sl

C-10

ejerduwoo st 3zed Teuotrido zebeuey ysel AJTION -~

3T pue
¢ (Teuorado ‘a1 Tasel AW
‘emt) doas ia,:. 31e35 ‘rernburs) ewrl 1e3sThbey
:o;u Ke1ds1q-seTqevien AN JT
! Yoo’ 1wpueTe) =: ewTl do3s
¢ ((puUTH'seTqeTIEA »x
‘Teuorado) suorieang) dooq KeTeq ! EE

*3xed Teuotado eyl ejnoexy --
uey3s o::—..u=0u.u0~n«4um>h>z 3T
¢ (arasel AW)
we3l 399°1e33ng seTqeTIes IeTnHUTS =: SOTqETIEA »z

¢ sysel zeTnbuys pue 33ed jeuoTado ejndexe prnoys JT yoeyd --

! seTqeTIEA BACWSY pue ¢ (a1 ysel AW) e3jerdwopn ysel‘zebeuey ysel

f (QI ySel eyl <= Xepul eyl) we3l] eaowey'ieyjng seTqeries r1eTnburs -—
_ :aoom “930Tdwos --

8T (QI ysel we3isAg ut : (I Ysel eyl) SeTqeTIe) eAoweY 8InpPesol sT 3zed Kxojepuem Jeyy iebeuey ysel AJTION -

_— - -— ! 3T pue
- seTqeTITA” BAOWRY FUNAIIONd -- ! (Kaogepueq ‘a1 ysel AW

. -— ‘out] doig ‘ewyl 3Ixe3S ‘Iernburs) ewrl uounamom
Jueu Ke1dsTq seTqeTIeA AR 3T
! YDOTD" 1EpULTE) w»: ewT] doas

! seTqeTIep @I03S Pue ! ((puty” mw.nM.:uw> ?.
¢ (a1 ASel eyl <= Xepul_eyl x03epuel) suoTIeang) dooT AeTeq S.E
.!Oﬂﬂlduﬂ\f oyl <= we3ll eyl)} ﬂOuH mng- Hﬂuwﬂm seTqeTIReA Hﬂﬂn—mﬂ.—.m ed &
utrbeq 3 I03epUen 93INOOXT -
8T (Q1 Ysel-weysAg ur : QI ysel_eyj ==
! edil sergeties 1eTabuTs uT : seTqETIEA eyl) SOTqeTIEA ©103S 8inpecoid ¢ areer e) usyy enuUTIUCH'seTqeTIeA AW IT
_— _ - wa3l 309°Ie3Ing seTqeriep xernburs =: seTqeTIe AW
-- seyqeTIeA ©I03S TUNAIIOUd -- { Y07 TEpULTE) = GUTL 3ILIS o
- - esT
! serqeTiEA ebuey) pue
$ (puty” moﬁnaand\, eyl ’ tTeuorido) suorieang =: noaum»:n 3do
¢ (pury-sefqerzep oyl ‘Azojepury) suoTiEIng =: uot3eIng | mmz

C-11

! e3jwe1) pue

! 234 dwe] =: 134 xsel eyl { SOTQETIBA Oyl =: SOTqeTIes AW
¢ (uorjeanq 3dp ‘uoTiEING UEW_ op (uoTaeang 3Imo : uor3eang_3do
‘a1 ¥sel eyl ~mo~.nm._.uu> eyl) @zTTeT3ITul 2134 _dusg ! uwotzeang 3Ino : uoTjeIng ! |_UelR
¢ zeTnburs DTIGUSD meu =: 134 dwe] ¢ odAl serqetae) aeTnbuTg ut : serqeTIes oYy)
utbeq seTqeTIes obueyy 3decoe

Joetes

¢ xd xsel_. __zeTnbuts : 234 dwey -

®T (uoT3I®INg 3NO : uoTIRINg_3do *OWT} 4D SWNSuUCDT isnw 3T ‘yse3 ,Teex, e burjernurs jo sesodind --

{ yoTjerng M0 @ uoTIRING_UEK oyl 103 auT3) ndo Aue eumsuod J0U PTNOM IT pue ysel STYY -~

! g1 ysel we3sks 3no i q1_ysel_eyl puedsns o3 we3sds burierzedo oyj moTIe pInom juswejlels Aejep ¥ -~

K uum ysel zeTnbuts 300 ¢ 134 ysel_eyl ‘juemaje3s ,KeTep, © JON pue pesn T ,dOOT OTTYM, & IBYY OION —~-~

-~

edA1 serqeTiep 1eTnburs uT : seTqeTies eyl) e3jeer) eanpedoxd 4
oot

- @3e01D FUNGIDOUd - ¢ (QI xsel AW) xysel puedsng-buryseax A

! @zTTETI(UI pPuUe
uoryexnq_ —ado ,
: uotjeang UeR

(puTy'seTqeTIeA eyl ‘ TeuoTidp) suoTieIng
{ pum'seTqeTIes oyl ‘Aiojepuel) suoTieang

¢ zeTnburs oTieuen pue

f doot pue ! seTqerIep Oyl =: serqerIes AW
¢ (a1 ysel AW) ysel puedsng'buryselx A ! a1 ysel =: QI y%el eyl
_— f ysel jueaxny’ v:iuaux A = a1 xesel AW
*eje3s pepuadsns ey -- op (:oaumu:n mo : uorzexng_3do
Ut Yse3 STY3 oAeo] I9nW om ‘pepuedsns ueoq eaey dn siIeIs —— { uvoTeang ano uoTaEINg_UeK

3T 3Pyl sysel [[® 3IBY] Seuwmnsse Ioyos3edsTp Oyl 8dUT§ -- ! g1 ysel weysds 3Ino a1 ysel_eyl
- ! odA] seTqeTaea aeTnbUTS UT : seTqeriep eyl) ezTreritul 3decoe
{ 30@T0S pue
! 37 pue utbeq
! 37 pue _ _ _
¢ (a1 yeel &R) ezerTdwo) yse]‘ zebeuey ysej ! odil serqeties retnbuls : seTqeTieA AW

! suoT3ound 310ddng pue

¢ ewty uoum._.mwm pue
! @uTT MON'OI 3IXel
(o o ¥

‘

(opoW ysel) ebew], edAl epon-sedAl eieq [eqoTd ¥ . .) 3INd 0I_3Ixel
(. o) INdT0I_3IX0L
t (g ‘9 *(ewry dois) spuodes" Iepuete)) 3Ing'OI_ewTy
f (4’ &) INGOI_3INGY
f (G ‘9 ‘(eury 3Ie3s) spuodes’ ;TepueTed) Ing-oI_emTl
(_e «) INGO0I_3XxOL
! ((boy ol xsel) uvuous e o_u)} u:m 01 QI ysey
! (e
(puryysel) ebemy,edA1 pury ysey-sedAi eleq TeqoTD ¥ , . , ang oI Ixel 6
- - _ urbeq
81 (odAl epon’sedi] ejeq Hanowu opOj_yse]
¢ g1 ysel-we3isis bey oy _ysel
¢ ewT]- tepueted out] do3s
{ ewt]liepueTed euyl 3I01S

odA1 puTy xsel* non;.—. ®leq TeqOTO puty xsel) ewtl 1031sTbey einpecozd
H a03|>3.0nlnn~_ pue

¢ dooT pue

quoau IepueTe) =: ewtl u:ouunu

doot 104 Keteq > (euty Aeveq 3ae3s - ewTl JUeIIND_) OTTYM

YO0TD" TepueTe) =: ewty jue1INn)

ADoT) ' 1epueTe) =: ewTl Aered 11e3S
utbeq

! owT]‘IepueTe) : ewry jue1IND

¢ @uWTL‘IEpueTe) : swTl AeTeq 3iels
: 203 keteq) doo7 Aeteq uny exnpecoxd

-

8T (uoTjeang ut

! (zebejur ‘qI yeel ‘meisis) :ounu!:.ou peyoeyoun
meu 87 Iebejul Y O uorIoUn}

¢ (xebe3ur) OI 1eDejuI‘OI Ixel meu sT Ol dI_xeel ebeyoed
¢ (uoTieang) OI PeXTI'0I 3Ixel meu 81 O ewt] ebeyoed

81 suoTIoung 3zoddng Apoq ebeyoed

! guot3doung 3xoddng pue

¢ (edAy ®PO" sedAj_ejeq ﬂmnowo SPOH_: u_nw._.
. ! q1 ¥sel-we3s vom 01
{ ourl-repusie) ouT] oum
'

eumT} - xepUSTR) UT eurl 3IEels
edA1 pury ysel‘sedL] eieq Teqoro uT v:d— ysel) ewt] uOumamom exnpesoxd
! (uoT3EBINg UT : 204 »aHOQ) dooT >a._,oa uny eanpedoxd

5T suorjoung 3ioddng ebeyoed
¢ zepueTes esn
H c04uu0>cou pexoeyoufn
‘sedKy ejeq TeqoTo
‘xepuere)
‘01 axel
‘mo3sks yYata

"¥se3 8Y3 JO oWT3 UoTInDexe eyjl 3no Jurad (7 --
puUe ‘ewT3 JO Junowe peryToeds e uow ewTy ndy eunsuod (] o3 sedil ysel ey3y --
moTTe seanpeocoid eyl -sebeyoed odi] ysel eyy 31roddns seanpeooid eseyy -

it PR YRS TR PR Y RS PR RS YRS S PN S ISR IS RS S S RS RELE RSN SRS A SN SRS R L K S Sl
——. .
. 0°9 UOTEIOA ePY XTPleA :IOVAONVI «--
. —-
--» ueTous ‘¥ TOPYOTH (HOHIOV »--
— .-
- 0'T !NOISWEA w--
e .-
e 2661 19queceq [:ILVd .-
——. p
-y suot3zoung 3xoddng FILIL e--
——. .-
et A X RSN RN R RS R R RS Y R R Y R R R RS S RS T RS PR RS S AN RS R RS A R AN RN At
e -
-—— suoTyoung iroddng .-
e ———
TTRABSESRNAERBE VIR R BV IR E NI LA TN N S IR FREBENAVRBEFIBNIINNISLARBERABEANNENORP T

Cc-12

oy

! we3lJ_eyl =: We3I_eyl‘jueiind
uey3 Xepul eyl = Xepul eyl'Iueiind 3T
_dooT pexo3s 30N eTTys
! ze33ng oyl-1ejIng =: IuelIn)
_ _ _ esTe
{ xepul eyl =: xepul_eyl'xejjng eyl Iejjng
! we3l eyl =: wWe3] eYL‘Iejjng_eyl‘1eijng
{ xejurod meN =: Iejing eyl Ie3ng
ueyy [Inu = l1e3jng_eyl-iejjng jT
¢ (paeny-ieyjng) BUTITIM 3IB3I§° JOITUOW
_ utheq
_ ¢ en1l =: ueaToog : PeIo3l§ 3IoN
we3l UT : We3ll eyl ! XepuJ ur : Xepul eyl) ©103§ exnpecoid

- 810315 IYNQIO0¥d -

_ ! eATeI38Y pPUu®
¢ (paengrzezjng) buTtpeey do3s'I03ITUON
¢ doot pue
! JxepN‘juerIn) =3 JueIINy
~ £ 3T pue
{ we3] dwej uinjex
N paeng- 18330) butpeey noum.uowwcoz
! we3l] eYyl-Iuerin) =: wel] dwel
uey3 xepul eyl = Xepul eyl °3ueiin)y 3T
dooT_TTnu =/ 3juerin)y eTTym
! xe3jng OYl-Iejjng =: UBIIND
! (paeny-zeyyng) DbuTpesy IIBIS° TOITUON 5
_ utbeq
8T WOl uIinjel (X6pul UT : Xepul oyl) eaTeiley uorlouny

- 8aTe1lsy FUNAED0IA -

_ ! @913 0l PPV pue
!_zejutod Azeirodwey =:_ 38517 @014
! 3871 @013 =! 3XeN'1ejurtog_Arezodue]
! 1e3uTod =: I03juTOogd Axezodweg
_ _ _ utheq
8t (edAl 3877 =e3jng UT : Ie3UTOd) ©e1g ol ppY einpedoxad

_— ®e13 oL PPV FUNQIOOU4 -

! z03uTOq MON pu®
_ ! 3T pue
! xejutogd Axexodwal urniex
E V] nuluxoz.uOuGuO&I»uMquEOH
! 3xeN'103uTOod Aieiodwej =:_3STT o01d
! 3877 @813 =: z03UTOg Azerodus]
_ _ _ osTe
! odAy juowery 3ISTT Xe3jjng meu uiniex
uayy (10U = 3ISTT 881y 3T
_ _ utbeq
8T odf1 3877 Ie3Ing uUINIEX IejUTOd MON uoTIouny

— 183uTOd MON NOILONMI --

_ _f wear : welI dwe]
! TTou =: adil 3sTT_ze33ng 38TT 8814
! TTou =: edAl_3sTT_z033ng : IejuTod Axexodue]
£ TInu =: odA1 38TT 103ING Ju8IIND

¢ odA1 103309 10330g

-- SNOIIWEVIO3A 103rao ==

_ _ { paodex pue
! TInu «: odAl 3STT 1e3jng : a83Jng eyl
¢ puTH'IOITUOW pieny
piocex
7 edi1 zeyyng ediy

_ { p10091 pue
¢ TTu =: edA1 3sTT xe33ng axeN
¢ well : well eyl
! xapul : xepul eyl
piodex
8T edAl juewerd 3817 1eyjng edAy

¢ odA1 jueweTd 3ISTT 2033ng ssecde_st edAy 31sTT_zezyng edAa
¢ odAl juewsTd 3ISTT ze33ynd edh3

- SNOILYYVYTIO3Q 3dAl -

sT z033ng Apoq xsE3

{ 1e3Ing pue

! (Xepul uT : Xepul eyl) we3] eaowey Aijue
we3I_ eyl ! Xxepul ut : xepul_eyl) we3il Ind Aijue
we3] eyl ! wepul ut : xepul eyl) ul yoeyy Aijue

&
-

(we3r uy
(we3r 3ano

8T iejjng yse3

- SNOIIVYVTIOAQ MNSYL

8T uwww=m|H0uu:oulxnua.MWMM:MMMMNMQ
H T 3

! zej3jng TOIUCY YrFEl pue

£ (Xepul uT : Xepul eyl) We3l] eAQWeY ©Inpedo.
(we3l uT : we3l eyl ¢ Xepul UT ! Xepul_eyl) We3]_3nd eInpeso
! WOII uINISx (Xepur uT

ad
zd

Xepul @yl) W3l 3eH uoTIDUN}

st 1033ng T0X3u0) ysel ebeyoed
¢ @jeatid st xepul edi3

! pjeatad 8T well ediy
oT110ud

e Y Yy Yy Y IRy Y Y N P Y TS RIS ST 2 il

=~»
bl 3
et 3
hait 3
-
=
==
——»
-
-
il 3

0°9 UOTSI®A epY XTPIeA :IOVAONYT
UeTeUM ‘¥ TOPUDTW :¥OHINY

0°1T *NOIS¥3A

2661 lequedsq [:3JIVQ

1e33ng Tor3ucy” Ysel :ITLIL

.||
.-
.-
.-
P
-
.-
-
-
.-
.-

el Yy Y Y Y Y Y Y Oy Ty T S I T T L

-
-
=

ebeyoeg 183jng [0IIU0D ysE]

a||
.-
am=

e Ty Y Y Y Yy Ty Y R AT NS S

C-13

st (we3l

! 203308 TOI3jUOD ysEL

_ _! we3l eaowey pue
! (wepul eyl) we3] eaowey'iejjng
uth
8T (Xepul ut : xepul eyl) We3ll eAoWeY 8INpesol

~ ~ _¢{ we3r 3ng pue
! (we3l eyl ‘xepul 8yl) wWel] 3Ind-iejjng 6
ut

uyr : we3l eyl ! Xepul Ut : ¥epul eyl) we3] Ing einpedox

pue

op (we3il uf

op (we3r 3no

_! wear 3@ pue
_ _ ! we3jl eyl uiniei
! (me3l eyl ‘xepul eyl) Ul Ydey)-iejjng 5
utbeq
_ ! weyl :_we3il eyl
ST well UINISI (XePUl UT : Xepul eyl) WOl JeH uorIduNj

! 1e330g pue
! doot pue
_ ! aoeTes pue
! we3] eAowey pue
{_(xepul eyl) eaowey
Op (Xepul UT : xepul eyl) we3] eaouwey 3decoe
10
_ _ ¢ we3l] Ind pue
_ ! (well eyl ‘xepul eyl) @I035
we3] @yl ! Xepul ur : Xepul eyl) we3] ind idedoe
10
_ ¢ urTy2eys pue
(Xopu] eyl) eATe13ay =:_wel] eyl
Xepul UT ! Xxepul eyl) ul yoeyd 3decow
IdeTes
doot
utbeq

_ ! eaouwey pue
¢ (preng-zeyyng) buryram do3g-103TuoR
¢ doot pue
{ IXGN°JUSAIND w»i JuUSIIN)
¢ qJuelIn) =: 1e@3urod Arezcdwey
! 3T pue
{ uinjex
¢ (paeng‘i2ejjng) HuTITIM dOIS‘ 2103 TUOK
! 31 pue
¢ (juexin)) 813 ol PPY
! IXON’JUBIIND =! 3IXON' 103UT0d Arezodwel
esTe
! (juexriny) wOuml09|nﬂ<
¢ TTOuU =: 1833ng 8Yl-1ey3ng
ueyl Trnu_= 1e3utod Azexodwel 3T
ueyy xepul eyl = Xepul eyi’3ueaind 3t
dooT TTNU =/ 3UGIIND BTTYM
¢ TIOu w: 103uTOd AIezodweg
! 1ey3ng eyl Ie3ING =: IULIIN)
! (preng-iayjng) DUTITIM 3IBIS° IOITUOW
utbeq
8T (XOpUl UT : Xepul eyl) Sacuwey einpedoiad

w3l eyl

_ ! 81038 pue
¢ (prens-xejyjag) burivam do3IS103Tuol

! 31 pue
¢ dooy pue
! 31 pue
! INGN°IUeIIN) =: JUSIIND
esT0

- ! asqvd 103§ ION
! xepul eyl =i Xepul_eyl'INeN Iue1In)
! WOl Oyl =: WeII eyl IXeN"IUe1In)
! 183UTOd MeN =: IXeN'JUeIIn)
ueyl TINU = IXBN IUSIIN) JTSTE
! ISTYd =: pPe101§ 1ION

c-14

! ebeyoeg ssecoid oI pue
! ssed01d Ol pue

¢ dooy pue
_ ! (0°7) &eteq
- _ ! (X201 aepuete) ‘IOqUMN JUSAT)
obessei Jueal dy-sseD01d butuosesy-ebejyoed ssedoxd burTuosesy
! ((z0qumpN jueae)ebewrt, zebejur_% , requmyN uesz O] ,) OUTT INJ O] INOL
¢ (enTea wopuey « (07) 2ebejur =: requnN jueal
¢ doot pue
! wopuex =: enyes wopuey
dooT 1°0 > enyep_uopuey
30 "1 < enTej wWOpueYy OTTYM
! wopuex =: entep wopuey
- _door
H xumhlucouuno.ocaxuuux A = 4l ysel Ay
¢ @zryeTaTUl 3decdE
_ utbeq
! 1ebejuy : xequmy 3Jueal
¢ 0°Q =: Je0T3 : enyep wopuey
ST sse001d 01 Apoq yse3

8T ebeyoed ssesozd oI Apoq ebeyoed

! siequuy wopuey esn

! uovszeauo) peyoeyoun

‘sxequuy wopuey

‘01 3x%8y

‘w3 shs

‘butyselx A

— _ ‘Iepuere)
‘obeyoeq sseooird butuoseey Y3iTa

¢ ebeyoed sse0014 O pue

{ ®seco1d Q] pue

¢ eztreT3ITUI KA1jU0

! (66) A3taot1g ewbexd
8T 3800013 OI %se3

st ebeyoded ssedoxd 0l ebeyoed
e T T Yy Ny Ry Y Y Y Y Y P A RSN S A S S S S RS LT L2 2 o

”H” 0'9 UOTSIeA BPY XTPISA :IOVNINVI nnn
= ueTSUM 'V TOPUSTH IHOHIOY a--
= 01 :NOISWEA a--
- 2661 1oquedeq 1 IV +--
HH” ebeyoeq ssevo1d 01 :ITLIL n“”
HH”CC’CllC'CCCI.IIIIIICC”C'ICCIICICllIlII-ClIIC.C.'.CC..I...UIC'I”l.l..l””“
”H“ ebexoed ssesoid Ol nuu
““”llCICIIIC.llll'l.llC.C’Cl..’lC.”ICI.III’IIII.IClC.I’CIICC’I..ICC’.IIIC””“

C-15

! WI0Y eyl 3o S4ITH OIUT 0eJ © SI1088Y —-
umcawm
doot

{ ezyreETITUI puUe
¢ (3NYUL ¢ 80, Jwelr | yojem_388 --
{ sdT1o 30881
¢t (,drorserna di 3se3,)_s3on13sUOD peOT
¢ (330) Kxowew dd eaiesuod 3es
¢ sdr1o 3TUT
op eztreritTul 3decoe

utbeq

¢ odKr =04uav=ou oTpoTaIeg od

£0°0 =t w073 00 ‘n¥ ‘nW _‘nd
‘3e01d dwel

! zebejur : zebejul dwe]
*yibuet_eyy

‘jueay eyl

‘LaN ‘14

! zebejur : a1_ysel

! ewyl’1epueTed : ewT) dwey

H Ammu..ﬁv butizs : Buraig eyl
¢ xebejut : peard serny

¢ 30e3'sTeqOTY SJITY ¢ I0BJ Oyl
! e8tel =: uearooq : peirul sdrTd

- SROIILWYWIOAA 103040 -

ST ssano1g butuoseey Apoq yse3

{ (buoT sdIT0 <= 38bzel
¢ 1ebejul <= @2INOG)
uoTsleauos peyoeyoun meu sT Huo sdI1o ol zebejul uoriouny

¢ (Teed s5dIT) <= 3ebIel
_ ‘ 3804 <= @01Inos)
UoTsI0AUQD UOMUOEUCD nau 8T Teey WQAHU Ok 3eoTd uoTidUNg

8T ebeyoed ssesozd buruoseey Apoq ebeyoed

! 0I %Ol Y3iTA

! uoTsIeAUO) POYOeUOUM YITA

! zebeuey o3 @sn ¢ zebeuel 3oe4 YaTe

¢ K3r11In esn ¢ A3TTTIN YITA

! 87eqOTY S4ITO esn 8TeqeTd SAITO YIta
¢ sdt7D peppequwy esn ! sdTyD Peppequd YITa

Rt T T LT T Y Y Y Yy Yy Yy R e Y S T R ST T LY St

HH” 0’9 UOTSIBA BPY XTPIoA :JDVNONYI ”HH
””” UeTaym Y TOBYDTW {YOHLAY ”HH
- 01 inotswaA oo
“un 2661 1equeded [:3IL¥A “HH
Hmn Apog ssacoxd buTuoseed :TTLIL ”HH

--n
e T T Y PR Y Y Y Yy Yy Y R R Y P R R S E R RS SRR RS L

e -
. Kpog ssecoxd buTuoseey .-
- —
A P YT Y Y P R TR N R R Y Y VY RN R RS RSI S ES R R NN R R SRS RS 2 X T

n

! ebeyoeg ssecold buruoseey pue

! sseso1g butuoseey pue
syFe] OTPOTIOd UON_umN
_ sysel OTpPOTIed wny
odAy uoT3TPUOD uavoquom ur uot3TPUO)_dTpoTied
Je0Td UT uoT3ezT1Tif_pexrrnbey

‘ .
3e0Tq ur M uoTEZTITI] ANEOAUQO

(19bejur urv
Mﬂomoucmca

JeoTd ut uoTIezTITIN AX03epURK
Jeotd ut uoT1eZTTTIN OTPOTIed
! ewry’IEpUATE) UT euTy snye3s)
snye3s zebeuey ysel Axjue
! (ewTl'IEpueTey uTr : awt]_3ueal
¢ zebejul ut : zequmN 3JuUBAF) OOMmuoz quead gy Axjue
¢« ucuou=H ur : ysel eyl) ysel eTqrseejul Axjue

! (ewr]'IEpUATE) UT : ewTl eyl
¢ 1ebejul uT : YSBI_OYL) euTTpeveq pessTi Aijue
¢ (ewT]'IPpUSTED UT : OWT]_ 8yl

! zebejul urv sysey eyl) vouo~aaou ysel Axjue
! (butays uT : Hutils 3Ioed eyl) iIded 3lessy Axjue
¢ ezTTrTITUl AXjue
! (05) Katroriag euwbeig
87 sseso1g butuoseey yse3

sT ebeyowyg ssedoxd buTuoseey ebeyoed

! sedAy eieq TeqoTO
‘iepuete) esn
¢ sedA1 e3ed TeqoTO

‘1epusTed YITm
e Y Ty Yy ey N Yy Yy Y Y Y SR R S A SN R SRR SN S S SA SASE E A X L
—— -
et 0°9 UCTSI8A BPY XTPadA :IDVNONVI Lt
——a .-
—— ueTeyM 'V TeeySTK :¥OHLOY Ll
— -
--x 0°T INOISN3A [
—— -
s 2661 1equwedeq 1 13LVA .-
—— .-
——a ebeyoeq ssenolg butuoseey :TTLIL »--
—— .-
et Y T I IS I RN Y T Y N PN S R R S AN S S S RS R R R R L
—— _ - o~
-— oeds ebeyoeq sbexoed sseso1g butuoseey -
[.-
e ST T eI TNy Y Y NP Y N R SRR YRR RS RN AN RS R RS SR R L L L

C-16

! (30ed ey),) 3I0ey ppY’ 10beuey 3oey

((18074 dwey)Teey sdr[D 0l 3e0Td ‘¢ \uumm oyl)
JeoTd_ u:oEoOm 305" 4£3TTTIN
¢ (1J3fd0 IVaY ‘g ‘aded eyl) puty juewbes jes-A3TTTIn

((a1 ysel) buoq sdriy ol 1ebejuj m ‘30ed eyy)
28bejuy_ "quewbes 385 A3ITTTIN
N} kumnmo HIOAINI ‘2 ~uomm OYlL) puTy u:oﬁvom 305 A3TTTIN
(Jpo3eTdwo)y ysel, ‘t “3oed” eyl) ucauum u:oEGOm 308 43TTTIN
¢ (1DEArH0 quOM ‘1 ‘39®d 8Yyl) puty 2rewbes jes-A3rITin
! (€) 3uewbeg 389°A3TTTIN =: 3IVRY Oyl

¢ ((ewtyl dwe]) spuodes-iepusle)) 3eofd =: 3eOTd duel

¢ pejerduc)_ysel pue
“ euTL w:a = SUWT] —due],
! ysel oyl =: dI asel
ety osa

op (ewTl'iepuared uT
ysel eyl) pejerdwon ysel ideooe

! zebajul ut
!t

((jeoTy dwey)Teey sdTTd ol 3Ie0Td ‘¢ »uumm eyl)

IeoTd_ ucosoam 295" A3TTTIN
¢ (_LDArdo TVEY_‘E ‘1283 _eyl) puTy juewbes 3es A3TTTIN

¢ ((a1 yeel) buot sdriy ol 1ebeiul ‘7_'30eg eyl)
_ z9b93UT juswbeg 385 £3TTTIN
! (1DALGO WAOFINI ‘z ‘3084 eyl) pury_juembes 305 KITTT3L
(JeuTTpeod POISIW, ‘I ‘3Ioed oyl) burzis_juewbes_3es°A3TTTin
¢ (103090 qQuOM ‘30ed 9Yl) Ppury [Juewbes 195° A3TIT30
¢ (¢) 3ueuwbeg 385°£3717T3n =: joBg eyl

10ed 8yl) I0BJ pPpY-Iebeuey Ioe]

! ((ewrl dwel) Spucoes ITpuare)) 3EOTd =! 3je0Td dwel

! aurTpeeg PessTH pue
outy w4yl =: ewr]_dwe]
! ysel ayy =: QI %sel
eutl Byl
%sel eyl) surTpered pessTy 3dedoe

op (ewTty-iepuefe) ur
¢ zebejul ur

¢ (yoed eyl) 3Idoe4 PPy’ 1ebeuer 3.4

10 { ((oW)Tesy 8dTTD 03 3BOTI ‘p ‘I0RI_eyL)
jeo1d_juewbes 35 A3IT1TIA
! (103080 qvad ‘y .uumm och) purny Jueubes 185°A3TTTIN
f ({nd)Teey sdYTD 03 JeOTJ ‘g ‘3I0BI_eyyl)
Ie0Td_ ucoeuwm 185 L3711
¢ (1>3rdo TVAY ‘g ‘30ed eyl) puti juewbes 3e5°A3TTTIN
! ((je0oTy dwel) Teey sdTTD ©31 3BOTJ ‘7 ‘304 oyl)_
3e0T3_ u:QEbOm 305 £3TTT30
¢ (1odA0do TYIY ‘Z ‘Ided eyl) puTy juewbes 305 A3TTTin
{ (,snie3s iebeuey ysel, ‘T ‘083 eyl)_
_ ocauum ucoEQOm 105 A31TTAN0
(103090 QHOM ‘T ‘319ed 8Yyl) PuTH Juewbas 05 A3TITIn
{ (6§) uewbag 09 A3TTTIN =: 3I0eJ eyl

(ewty duwe]) spuodes-iepuate)) ieold =: 3IeOTd dmel

! snjeag uomu:m! jysel pue

¢ sygel OTPOIISd UON UMN =i LdN

! symel oavoaumm unN =: 1Ld

! UOTITPUOD_DTPOTIGd =i Od

10 { uot3eZITTI_pextnbey =: n¥
! uoTaezTTTag teuworido =: no

! uoTIPZTITIN A103epUBH =: W

! uOTIBZITTIN OTPOTIBG =: Nd

! BWT] SNIBYG m:I_owT]l " dwey
sYsel OTPOTIDg UON_UWNN
§y8E] OTPOTIad wWON
UOTITPUOD DTPOTI®d

2ebejul uTt
2ebejul uTt

op (
H 0a>al=0ﬂuqvcoub0uv0ﬂuom ut

! qecTg Ut UOTIEZTTTIN_peiTnbey
! 37§ uT uoT3eZTTTIQ TeuoTIdo
! je073 uTv uoTIeZITTIN »uouavnmz
¢ 3eoTd uTv uoTIEZTITTIN OIPOTIed

¢ ewTl'IEpPULTR) UT ewy] snieas)

stje3s aebeuey ysel adenoe

uoT3e2TTTIN oTporied JUSIIND Y3y 8T <1d> -

ybTuUpTW 8DUTS Spuodes JO laqunu eyl -

ut ueatb 103 ST sSujle3s STY3 SWII 8Y2 ST <ewr] oYl> eIoym —-

w(<LdN$> <1d#> <NOILIQNOD> -
x0 <> <A0> <OW> <Nd> <eutl oyl> snijels iebeuew ysel)., -~

C-17

: WI0o 8yl JO SJITD 0IUT 30e] € BIXSSEY --
¢ ((a1 ysel) buoT sdTTy oF “zebejuyl ‘7 ‘Ioeg eyy) -
_ zebejuy u:wamcm 385 A3TTTIN _ _ _ 10
¢ (JOAME0 WIDWINI ‘7 ‘304 oul) pury_juewbes 3es°A3TTTIn ! (30eg eyl) 3oed ppy-1ebeury IdeJ
¢ (. ysel erqiseajul, ‘l ‘3oed oyl) Hurais_juewbes 3es A3TTTIN

¢ (1loIrE0 QYoM ‘T ‘3Ided eyl) puty | Juewbeg 385° K3TITan
£ (z2) uowbas 189 A3TTTIN =@ 300d eyl

Wmmylmﬂnaumounm pue

xuwa Byl =: QI ysel
op (1@bejul ur : ysel eyl v ysel eTqrseejur 3ideooe
! (30e3 eyl) 303 ppyY- 19bruEK I0B4

£ ((14N)Bbuot sdrio 03 zebejul ‘g ‘joes eyl)
ucmwucu ucosvom 105 4377TIN
(103040 MIOAINI_‘6_°I0BJ 0y) pury_juewbes 3es'A3TTTan

((Ld)buoT sdTrD 03 zebejul ‘g ‘joed eyl)
_ uoooucH Jueubes 305 ALTTTIN
¢ (1DEPE0 WIADIINI ‘g ‘I0ed @yl) puTy 3ueuwbes 305'KITTTIN

¢ ((od)ebeus,edky UOT3ITPUCD DTPOTIed
‘L3085 Byl)

m:«uum u:QEoOm J0s5°K3TT7TIN
¢ (103080 gdoM ‘L ‘aded ouL) puny_ _Juewbas 39s°AITTTIN

! {(n¥) Teed sATTD 03 3eOT4 ‘9 ‘3o eyl)
3e0Td_ uﬂ@ﬂOOm 39543717130
¢ (1O3LE0 TYSY ‘9 ‘aoed osp) PUTY_3juswbes 325-A3TTTIn

! ((no)Teed sATTD 03 3eOTd ‘¢ ‘I0B3 8yl)
L u:oﬁo@m 305" A3TTTIN
! (103090 TVIY ‘G ‘3I0ed eyl) pury juewbes 3eS5°A3ITTTIN

((qeoTd dway)reey sdr(d ol 3Ie0Td ‘g ‘3I0Bg eyl)

JeoTd u:»ﬁuom 395 A1TTTI0
£ (10390 T¥IY ‘€_‘3°ed oYL) PUTH ausuwbes 3es A3TTTan

((uco>m oyl)buoT umaao -} ~ooou:H ‘7 ‘aoed eyl)
_ zebojur _3ueuwbag 305" KatrTan
! (103CHQ YADAINI ‘Z ‘3084 oYl) PuTH_juewbes 385 A3TTTan
(.obessel 3jueag, ‘1 ‘ioed eyy) buriis_iuewbes” 1es-A3TTTIA
£ (103rd0 QUOM ‘T ‘30®J eyl) PuTH juewbes 385 A3TYTIn

10

! (g) 3uembes 389 K3TTTIN =i DRI OYL
¢ ((eurl dwel) sSpuodes’iepueTe)) eoT3 =: 3IBOTY dwel

! ebessely IUeAT dd pue
! osnk JueAy r: ewt] dwe]
{ JoqUMN 3JUBAZ =: juaAT eyl
eut]_usal

op (ewrl‘Iepuere) ut _
1oqumN 3ueay) ebessey jusad gy deooe

¢ 1ebajur ut

+butasey 10j pesn eanpesoid ,peqqnis, eyrdurs e ST STYL --

*3yBTUPTW BOUTS SPUODSS JO JOqWNU BY3 ST <cemt] 8yl --
anTea 18b03UT Ue ST <JueAT OYl> BISYM -~

L (<ouTl eyl> <iluead eyl> ebessew uealn), --

B

¢(douor3ezTTTIN OTpoTaed Meu

‘do"xse3 A3Tpow ‘do yse3 esowex ‘do yse3 ppe) sT dg peurjeq 1esp edA3

*SUOTIOUNg 1O8[) @ZTTeTITUL -~
ut peutjep uwezboidqne yoee 103 eiey sedi3 uoTieieunue ppy --

8T (plooey senTep In0 : 3Tnsey eyl
! 388l Ul : weTqoId eyl
) uoT3Ioung ejenyeay eanpeooid

! suorTjoung 198 @zTTeTITUl pue
‘PYoA 103 A, --
pue ‘elqetiea preTjTiTnu e o3 1ejutod ® 1oy ,w, ‘ediy ejep --
usouyun ue o3 1ejuted e 103 ,n, ‘ueetooq e 10 ,q, ‘pPioA --

1930eIRYD B 03 193juTod B 203 .M, ‘Buriis ® 03 Jejuyod ® 107 8§, --

‘1e30erRY> 203 ,0, ‘Teax sdrro 203 ,p, ‘buoy sdrTo 103 ,T, @€ --
ganTeA oTqemoily ‘-uwexboad-qns sty3z Aq peuinjez xejsurexed --
3o odA3 ey3 st juswenbae Teury eyl ‘,do_peu;jep_iesn, --
eq 3snuw juemwmbie paTyi eyl -edk3 ao nacauon uomp. --
&q peutrjep odA3l uotjereumue oy3 jJo =0aumu:om0ua0u buriis v ——
8T jueumbie puooes oYl 'sSeTNI EBpY/SAITI SpTSUT pesn eq TITA —-
umuu eweu oy3j jo uorjejuessidex buriys e sT Juewnbie 3SITF --
o vccawav 10sn, ‘,do” uotrjezrIIIn unvoauoalxoc
hcoaumuaaaua uavoanom|>o:) uoTiound eurjeq-ejenteal
,A, ‘,do peutjep zesn, ‘,do ysey AjTpom, ‘, yse3 AgTpou,)
uoTIOUNg euTFeq-e3jenyeay
Jdo yse3 eacuwex, ¢, ys8] BAcweI,)
_ - uoTIOUNS euTyeq-elenieAl
«do yse3 ppe, ‘,yse ppe,)
uoTIOUNG QUTIe(e3renTeal
utbeq

, '.,do peurjep 1esn, *

.T. ‘,do peutjep ziesn,

epTny buTumre1601g POOURAPY BPY/SAITD Mu ut 7 ebed o3 xejey --
ebeyoed ejenreaz eyl woxj ST exnpecozd uotTidung euTyeq eyl --
rexey peryToeds eq 03 pesu sSuoT3IOUN} peuTIep Iesn [TV --

8T suoTioung Ies(8zTTeTITUI eanpedsoxd
¢ (Buo §dIT0 <= 38biel
‘ 18bejul_<=_eoinog)
uoTSIeAUC) peyOeyoun Meu ST HuoT S4ITH ol 1ebeiju] uoTiouny
ST suotisung 1esn Apoq ebeyoed
! UOTEIGAUC) peyoeyoun YiTm

! weyshs yatm
tA377130 YITA

! we3sks esn
{K3TTT3IN esn

_ Monahm Yt

!zabeuey Axouwel esn ! z8beuey IOWOH Y3ITM
= Y3

{ zebeuel 3083 @SN ! zebeuey 3j0o®Jd Y3TM
Y3r

{ejenTeAl Y3ITA

fo1_sdTTo esn fo1_edT(D YaTa

fgTeqOTs BATTD osn !sTeqOTH 8ATTD YaTM

{ 1epuaTe; asn { xepueled Yiim

! ebeyoeq uommcmz ysel esn ! ebeyoeqg uommcmz YRl YITM
! gedAy e3eq TEqOTH esn fsedf] e3eq TRQOTD Y3ITM

it R L Yy Yy Y Y P YL YN Y Y Sl

HH” 0°9 UoTSIeA BpY XTPISA :FOVAONVT ”H”
HH” uereyM °v TOBYOTH :YOHLOY ”HH
HH” 0°T :NOISHIA ”HH
HH” 2661 tequedag [:ILVA nmu
HH” suoTIdUNg 108M FTTILIL “Hn
H““CIlCO.I.’Cll'C’C'CC!'i'CIIICC.'I".ClIICCICC.'CCCCC"IC'.'CC'CICC’CCIl’”“”
Hun suoTioung 1esf nnn
-n »—

Ity Ry Y Yy Yy Y e

¢ ebeydeqd ssecord buTuosesy pue
¢ ssesoag butuoseey pue

¢ doot pue

! 3007088 pue

peity seTny

¢ (1) 8d71o una =:
! 100°0 Aeteq

£ ((yabueT eyyr- -1)BuTIIS YL) 3II0SSY"SJITO Peppequl

! J0eg 31088y pue

¢ yabueq, ocauum uomh eyl =: yibue eyl
! buta3s 30ed oyl =: Acuocoa ucauum 0eg eyl 1) ocauum oyl

op (butzas ur

wC4uum q0e3 eyl) oe3 3zessy ideooe

10

C-18

bet3g Aerdstg meN <- 1 jueumbay --
(<9b3y> <gbay> <pbaw> <ghay> <zbay> «1bay> yse3 A3jtpowm) -
i OYIT X0OT pPInoys Tred S4ITd eyl --

<= do yse3 AjtTpou ueym

- - _? 37 pue

! (_Edl @Yl) ySel eacwoy-iebeueq ysel

¢ (3ul oTIeumy-enyes) Febejul =: gl oyl
_ueyy LDArA0 YADIALNI = puty-enTep 3T
{ (1 ‘welqold eyl) Iueumbiy UMOUNU[30 =i enyep
¢ 103LE0 QIOA =: puTy'ITnsey eyl
(€21 }se3 aaouwex) --

<= do Yse3 BAOWSI USYM

¢ (g0l eyl) BuoT_sdITd ol zebejul =: 3uI oTIeUMN ' ITOSeY eyl
- _ !(g0l ey]_‘ecuejxodwi_eyy
‘emT] 33B3S @Yl ‘eurpesqg eyl ‘poriagd eyl = _
‘puty eyl ‘edAy eyy ‘bers Aetdstq) ¥sel ppy-iebeuey ysey
! 37 pue
¢ 1 =: eouejzodur eyl 3
_ _ esTe
! (enTeA OTIewmN-enTep) iebejul =: eouejrodu] eyl
_ ueyl I0ALHO TVAN = PUTH enTeA JIs(e
¢ (jul oTaeumpy-enyeps) 2ebejul =: eouejxodul eyl
_uey3 IDE0E0 YWIDIALNI = puTH-entep 3IT
¢ (| ‘weTqoxd eyl) 3ueumbiy umoujyup 3J8H =: enTej
£(((9 ‘werqozd eyl) 3jueunbiy 3eoTd 189)
uotjeang
‘{ A°013) Reg
' X00TD) YIUoH
‘(A00I3) zeEX) _ -
- _30 eumyl-iepueTe) =i OWTL 3IeI§ OY]
L{((¢ ‘werqozd eyl) uemmbiy 10T 3189)
uoTjeing
‘(Y0010) Aeq
‘(907D) Y3uoW
‘(o010) eRX) _
30 ewT] 1epusTe) =: SUTTPEEQ Oyl

*3Tnb 03 spuocdes ‘e‘t ‘buryj owes oyl &q o3 pesoddns ST --

STYL 'IYOTUPTW SOUTS SPUODSS UT MOU SWTI OY3 SUINI9T SWT3 —-
uoT3Iouny EPY S4ITD eyl -ysey nwuu 3o eurrpEep oyl sjuessider --
eyl 3e073 © oq 03 pesoddns st jueumbie y3jTy oyl -—

! ((p 'meTqoid eyl) uewmbiy jeoTd 3D) uoTIRING =i PorIed eyl

‘ppe 03 ysej ey3 jo poried eyi sjueserdex --
Iey3 JeoT3 ® eq 03 pesoddns sT Jusmndie yianoz eyy -
1 37T pue
{1 =: pury eyl
_ _ esTe
! (anTep oTzeumy-enyTep)_xebejul =: puty eyl
- ueyl IDILE0 TYAY = puTy-enTeA yTsie
¢ (3Jul oTIeuUMN'®nyeA)_i0D8jul =: puTy eyl
_usyl LJ3 90 YAQILNI = pury entep 3T
! (£ ‘merqoxd eyl) 3uesmbiy umouyup 389 =: anyea
r19H603UT Ue aq PrNOYS 31 CPUTY Xsel oyl --
93e0TPUT 03 enTea ® oq prnoys 31 - jusumbie piTyl 8Y3 309 -
. ! 37 pue
! 10113 JUTEIISUO) @STel

¢ 10117 JUTRIIBUO) esTel
_ esTe
! YYTINONIS =: eodAl eyy
ueyl YVINONIS, = [T 93udjuc)d’ Toquis-enfes jTste
{ D100I¥dd =: edAl eyl
uey3 ,JIQ0IJdd, = TT®’83uU0juo) ToquAs enTeA jystTe
_ ! IWIL ANV =: edAp eyl
ueyl ,IWIL ANV, = [1e'83u@iuc) Toquig enieA 3T
_ uey3 1DIr|0_QUOM = pury-enyep 3T
! (7 'wergoxg oyl) 3ueanbIy umoudup 109 =: enyep

*UVINONIS X0 ‘FWIL ANV ‘OIQOINEd 10Y3iTe eq PThoys 3T snyl --
+ed&3 yse3 ® aq prnoys 31 ‘jueambiv puodes Y3z 8H --
A . vmm

! 4sTYd =: berd Aerderq
_ esTe

! andl =: berd Leydsyg

ueyl ,3N¥I, = TTE"#3IUSIUOD* ToquAs enTen
uey3 pue IDALE0_QHOM = puTy-enfep JT
¢ (1 ‘werqozd eyl) jueumbiy umouxupn 389 =: enyep

STV 0 ANYL ©q PTNOYS 3T --
soyl ‘yse3 STY3 jo sewr3 eyl Ae(dsTp 03 3IOU 10 18YIeysm --
skes vyl pIom ® oq pTnoys 3I ‘Jueumble 3IFIT] BYy3 89 -

! LOAMEO MADEINI =: PuTH'3ITnsey eyy
eouejzodul <- [jueumbay --
ouyl 3IeIS <- 9 Iueumbiy -

euTTpEag <- § Juewnbay --

potaed Hutjuesezder enyea jeoTd -

potieg <- p aueumbiy -~-

enTea kue eq uep -

_ pury Xse] <- ¢ juewmbry -~

YYINSONIS ‘DIQ0I¥Ed ‘3WIL ANV I0yiTe eq ued -
adAyl ysel <- Zz ueuwmbiy --

37 Aerdstp 30U 04 - ISTVS --

sewT] uny s§,ysel eyy Keydstg - INYL -

berg Aerdstq <~ 1 ueumbiy --

(<LBxe> <gbae> <gbae> <pbae> <gbie> <zbae> <ibie> yse3 ppe) --
P @YIT Yoo pInoys TTed s4I1d eyl --

<= a01xmmulvvm ueym

ST uoTIOUNJ 188[Byl esed

*Juemelels Osed oy3 ur Aijue --
ue eaey pTnoys sedf3 suoTjeisumue peurysp 8acqe 8yl O yoem --
‘weaboadqns @jetrdozdde ay3 JTeo 031 Juswelels esed STYI AJTPOR --

¢ (TTe eweN pouTeg'enJeA UOTIOURI‘ONTeA WeTqold oyl

yenTes,do peuTyeq 1esf =: uoTIOUNS Iesp eyl

utbeq

! zebejul : eouejzodwi_eyl
"PUDY_eyl
*g23_oyl

QuIT] * IBpUBTED
PuIT] " ¥PULTED
¢ uoTaeIng
_¢! ueeto0g
! odAL puty ysel

! pIooey senyep
! do peurzeq iesp

owtl 3Iels eyl
eutTpeeq_eyl
polzed eyl
betd Aerdsta
ed&] eyl

___ontep
uotioung 1esn oyl

C-19

! suotioung 1e8(pue

! UoT30UNJ @3enTeAl pue
_(dT4D 3 ,°uoTIDUNy pYIeAUT U® BT
% [Te’eweN peuTieq’ o=~u> UoTIOUNS T enTeA weTqoxd eyl ~.mouu0:) g
<= 10117 JUTEIIFUOD UeYm
uoT3ouny peutjep Ariedoxadwt ue jo eses ey3 sefpuey uorideoxe sTYy --

uotideoxe
! ased pue

f (((1 ‘werqozd eyl) 3uewmbay IeOTJ 383) IPOTI)
UOTIEZTTTIN OIPOTISd MON’ 1ebeuei ysel
! 153rg0 AIOA =: puTH" aTneey ouL

<= do uotTjezT(TIn otporied meu ueym

(g0l eyl ‘eouejzodur eyl
.oEﬂH uuaum oyl ~0=aawmnn oyl
‘potTaegd eyl ‘berd Kerdst@) ysel A3Tpow- 1ebeuel xsel
! 31 pue
! 10117 3juTEIISUOH @STEX
_ _ esTe
¢ (Ul oTIeumN-enyea) Iebejul =: gol eyl
_ueyy IDAC40 YIDIALNI = PuTy-enfTes 3T
{ (9 ‘werqoad eyl) IueumPiy umouyun 89 l. entes
! 371 pue
! 10113 JUTEIISUOD ocaau
esTe
¢ (3ul orzeumy-enyes) Iebeijul =: eouelrodw] Oyl
_uey3 LDALE0 WAAINI = puTy-enfep 3Iv
| (¢ ‘weyqoad eyl) juommbiy UMoUNU[389 =: OnTeA
H{((y ~aoanoum eyl’) 3Jueumbiy 3e0Td 309)
uoTyeINng
‘(Yooy) Aeg
‘(X907D) YIUOH
(yooId) IeeR) _ _
_30 ewIl'IepueTe) =: ewrl 3Iels oYl
£(((¢ ‘meTqord eyl) 3Juewmbiy 3e0TJ 369)
uoTrjeang
‘(yoor1d) Aeg
‘(YOOTD) Y3IUSK
‘(¥o0TD_) I®RR)
30 ewT]‘IepueTE) =: OUTTPES] eyl
! ((7z ‘weTqozd eyl) 3ueumbry 3e0[J 38H) uOTIEING = poTaed eyl
! 3T pue
¢ gevd =: Hery Aerdsia
esTe
, ! andl =: beyd Ketdsta
| ueyl ,IN¥I, = TT®#3UBIUOD- TOqUAS BTTEA
ueyl pue IJELGO_QHOM = pury-enyes 3T
| ! (1 ‘werqoxd eyl) IueumbIy umouyup 289 =: enTe;
i { LoArEO QIOA =: PUTH'I[nsey ona

a1 xsel eyl <- ¢ 3jueumbry -

eouejzodul <- ¢ jueumbry -~

euTl 31E3S MON <- p uewnbiy --

suTTpEeQg MON <- £ jueuwmbiy -~

potried Hurjueseidex enTea 3eoTi -
poTied meN <- g 3jueunbiy -

sewt3 una s§,)yse3 AeydsTp j0u OoQ - ISTVI -
SOWTY unx s,j)se) eyl Aeydstg - INYL --

C-20

Inoy3TA eTTdwod jou TTTA wezboad eyl °jueTieA 8yl 03 uaath eq
3Tnejep ¢ eyl serTnbex pioder JUETIEA Y3 JO ©SN ey3 eyl 830N —-

{39073 jJO (OTPOTI@d UON_XER''Q
‘OTPOTI0g XEH' 0

‘edA1 xepul senyes 1sel) Aexxe ST >nuu¢ no=H¢> 3se] ediy

¢ (WOS ‘XYH ‘NIN) ST om»a xepuj senyes 3s0] edAy

-sasodand buriysel --

203 sewTy eberesr pue ‘xew ‘utwm HuTpiodex 103 eie sadfy eseyl --

cmmmmmeo- SNOILVYVIOEA FdAL mmmemme

NOOOUG 1 juelsucd
1ebejul juelsuod

OTPOTI0d UON_XeW
otpovied ¥ew

>ua»o~um wo33og

seT3TIOTId dN JO 3IE€3S
A3t10714_pepaeostq

Aata01zd | |_peaidueexg
»uauoaum ocauzuoxm
86T3TI0T1d OTPOTIOd | 30" Zequmy
K3110T1d °IPOTI8d 3iElS
»uauo«um 1ebeuey ysel

»aaoa dems™xsel 8oTAl

29beju] jueisucd
19bejul 3uelsUCD
18beju] jueisucd
2ebejul juejsucd
10b03u] JuUejsUOD
1ebejul Jue3sucd
10b93ul Juelsucd
1ebeju] uelsuod

I®0T4 JURISUOD

et SYIEAON TIWVN —mmmmeme-

8T ebeyoed zebeuey ysel Apoq abeyoed

.vcaxuMHx A
‘ebeyorg £800014 DUTUOSERY
‘syse]_OTPOTIOd
~uxmoa 1eTnbuts
‘gyme] ouTl = Kuy
‘01 Inel
‘ylel esn

¢ 103e103] pebeueyy pepunoqun TeTiuenbes HuTyTeg AITIOTIg ondeg
.:oauu¢>=ou _poyoeyoun

‘ebeyoey ssec01g butuosesy

~m=4xnmax A

‘sysel_OTpoTIed

.oxuah zeTnbuts

faysel ewry Auy

‘01 Ixer

‘Y3eH Y3ITA
it TR IR R EE LRSS S RS A PR SRR PSR RS SRS R SRS SRS R R RS S S R 2 2 A T Suind
“Hn 0°9 uoTsIep TPy XTPIeA EOVAONYI ”HH
- WeTOUM ‘¥ TOPYSTH HOHIOY a--
= 01 :NOISWEA w--
= 2661 2equeded 1 LN .--
HH” ebeyoeqd xebeuey xsel :FILIL HHH
”””Ci"‘l.ICIC'I.'..CC.".’..CCICCCIC..'CICIC'C'IIIIII.' -C'.CCCCCC'CCCI'”””
HH” Apog ebeyoeyq ebeyoed rebeuey ysel nuu
——u .

e Y T Y Y Yy Yy Y N Y Ny Y

¢ ebexoeg zebeuey ysel pue

¢ uorideoxe : 20133_eTnpeyds_renburs
¢ uotideoxe : 10113 _eTnpeyos_oTpolied
¢ uotadeoxe : 10117 eTnpeyos BWT] Auy

¢ 1sbeuey ysel pue

(g1 ysel-we3sks ul : QI ¥sel eyl) e3letdwo) ysel L13jue
£ (3BOT4 UT : TTIQ MON) UOTILZITT3N OTPOTIed AeN A1jue

¢ (zebejuy ut : ai_xsel_eyl) ysel @aowey Axjue
! (zebejul ut a1 ¥sel_eyl
! zebejur eouejaodm]_meN
! ewt]‘IEpuUSTED : EWIL 3ITIS_MON
! ewtl‘1EpUAITED eutTpesq_meN

uoTyeIng potied_seN _
! ueeyoog : Ketdsia meN) Ysel A3tpoW Ai3ue
¢ (zebejul 3no ar ysel_meN

¢ zebejul urt
ewT] " FEPUOTED UT

Qu:u...uo&sm _oyl
eumT] IeIS_8yl

oWt} 1epueTE) UT eurTpEeq_oyl

! uotieing ur potied_eyl

_! aebejur ur pum_Oyl

¢ od&1 puTty ysel ut o&»h oyl

{ ueatTo0g UT bers Aerdstq_) Yeel ppv Az3ue

¢ (zebejul uy : 388l eyl) sITNSeY Isel 3urid Aijue
! ezTTeTITU] KIjus

¢ (86) A3taovag ewbexg

st zebeuel xsel yse3
51 ebexoegd zebeuey ysel ebeyoed

tsedAy eleq TEQOTO
‘repueTe)

_ ‘we3sig o8N
‘gedK1 e3eq TEqOTD
‘1epusTe)

‘weishs yita

AN EA IR NN NSNS RN S AR TN NSNS A NI NSNS N SN ARANN IR NN SR GE N CNNN NIRRT

”H” 0°9 UOTEI8A ®TPY XTPIGA :FOVOONVI nnn
Hnn UeTeyM Y TOBYSTHW :WOHIOV nmm
HH” 0°T :NOISY3A ”HH
= 2661 20quedeq [‘3VA .-
”H” ebeyoeq xebeuey ysel :FILIL ”HH
L einresssssnssinsvaruasensinsansenssonnssnnnssnnnsnnsnretnnnnrtanennryann
Hnn sadg ebeyoeq ebeyoeq rebeuey ysel ”HH

-
L T T L T T Ly Yy Ty Y Y S L LYY R

C-21

‘UOTIBZTTTIN TBUOTITPPY
N

t g = qe013 ! 3ebpng uoTILZTTTIN OTPOTIed
¢ o =: xebejur : sysel OTPOTIBd_JO_Iequmy
‘gxsel dN 3O umN
£({((0°0 <= SYAHIO) <= SYAHLO) <= WAS
‘((0°0 <= SYAHIO) <= SWIAHIO) <= XVR _ _ _
((0°T <= SWAHIO) <= SYTHLO) <= NIW) =: Keaxy senyep 3se] : snd 3Isel
£(((0°0 <= SWIAHLO)<= SUIHLO) <= WNS
‘((0'0 <= SYIAHLO) <= SYIHIO) <= XWW _ _ _
“((0°'T <= SUAHIO) <= SHTIHIO) <= NIW) =: Aexzy senTep 38el : sdwo) 388l
£(((0°0 <= SYIHIO)<= SYAHIO) <= WNS
‘((0°0 <= SYIHIO) <= SHIAHIO) <= XWW _ _ _
{{0°1 <= SHIKIO) <= SYIHIO) <= NIW) =: Aexxy senyes 3sel : BPOK 3se]
£(((0°0 <= SYIHLO) <= SUIHIO) <= WNS
‘({0°0 <= SYIHLO) <= SUIHLO) <= XWH _ _ _
2((0°T <= SUIHLO) <= SYIHIO) <= NIW) =: Aeiaay senyep 3se] @ suey 3se]
£(((0°0 <= SYIHIO) <= SYIHIO) <=~ WAS
‘((0°0 <= SYEHIO) <= SYIHIO) <= X¥W _ _ -
2((0°T <= SYIHLO) <= SWAHIO) <= NIW) =: Aex1y senTeA 3Isel : SPpPY 3Ise]

m——————— SNOILWVIOAA 1D3ALH0

! (umC, <=

— futa <=

‘30 POTIRg <=

_ _ ‘uoTjeIng <=
‘234 _¥°0TH ToIU0) Y8y <=

>
_ >
30 K3TI0T24
K3Tr0T2g
we3y)

10381031 P W popunoqun TeTY

! uotjeINng UINILZ

beg butyTed _A3TIOoTig enieq meu
sT eneny peiepip porieg ebeyoed

(13d X°0TE TO23uU0d A8 uUT : AL eyl) FO porIed uoriouny

— ‘y<u <=

‘30 ecue3iodm] <=

_ - ‘zebejul <=
‘134 30079 TOI3UO0) YSe] <=

P

u

30 AarTIovad

favxotagd
we3l)

10381031 pebeuRK pepunoqun Tefiuenbes buyyTed A3TI0TId enliaq meu

! zebejul uanjex _ _
(133 2074 To23U0) ysBL

! (4=<,"IEPUOTED <=

! u<y IEPUOTRD <=

‘30 surTpeeq <=

- ‘ouITy, c IPpUBTE) <=
‘13d_Y°0T8 TO13U0) ySel <=

8T eneny peispigp eouejzoduy ebeyoed
ut : gyl eyl) 3O eouejzzodwl uoTIOURY

>

— >

30 A3rzotTag

Kytz0T1gd
welr)

103e103] pebeuel pepunoqun TeTjuenbes buryTed A3TI0TId endeq meu

! ouTlI¥pPUSTE) UINIOX

sT eneny peiepip eurTpesq ebeyoed

(234 ¥oold ToI13uo) Ysel ut : €101 oyl) JO euTpeeg uoTIoUNg

! (4m<,'XEPUBTED <=

__ ‘4%, IEPUOTED <=

‘ewT] BUT3IIEIS IS8R <=
_ ‘ewY] ' Iepueye) <=
‘133 3o0TH TOIJUO0) XBBR] <=

>y

- e

30 A3ta0T24

K3rxotag
we3y)

10381031 PObeuEy pepunoqun TeTiuenbes Buryied A3TioTig endeq meu
ST eneny peisply owrl 3iels 3seie] sbeyoed

! ewyl‘iEpUSTE) UInNIeI

(13d YoOTE TOIUO) ¥sBL UT : @Ol eyl) ewrl HuTIIEIS 3883 UOTIOUN]

! (4=<, IFpUBTE) <=
’ 4y IPPUSTEDY <=
‘eurt]” BuTjrels <=

a=>y

e

30 A31I0T24

- ‘SuTL " IPPUSTED) <= £3ta0v14
‘234 3o0Td TOI3U0D ASE] <= _we3r) _ -
103e103] pebeuey pepunoqun Terjuenbes buyyreq A3TioTag_endeq meu
ST enenly peizepiy ewTl 3Ie3s ebeyoed
Qﬂﬂ.ﬁ.k!ﬂﬁﬂdﬂu C.W:ﬁ'u - - _ -
(334 %o0TE TOI3IUCD XsEL UT : @DL eyl) ewrl Durire3s uoyriouny

L 4=, <= ">

_ _feke <= >

‘30 QI_¥sel <= 3o A311071d

_ _ ‘zebejur <= A3taovag
2134730078 1033U0) Yse] <= we3y)

20301931 pebeuey pepunoqup [eijuenbes buryreg A3TI0Tid endeg meu
8T enend gl ysel ebeyoed
¢ zebejur uinjex _ _ _ _
(23d YooTd TOIIU0) ysel UT : €J1 Oyl) 3JO aI ysel uoriduny

{ (380Td) OI 3e0TJ°0I 3Xel meu sT O] 3eoTd ebeyoed
! (uoT3EING) O POXTAOI 3IX0]l AeU 8T O] «WY] ebexyoed
¢ (zebe3jul) 0 1ebejuI’OI Inel meu &t OI Ul ebexoed

[EPUOR . SNOTIVILNVISNI OJI¥ANID -

1ebejuy 3o _ - _ _
_ (seI3raorag_doTPOTI6d JO JequmN-) Kexxe sy edAl sutg oTpoTieg ediy
134 yoo1d T023uU0) xsel jo (ediy pury %8€l) Aexze st odAl 31817 ysel ®diy

! pacoex pue
_ _ _ ! esed pue
! 134 ysel_zeTnburs : x3ig Ysel rernburg eyy
¢ adfy serqeTaes 12 nbuUIS seTqeraes 1eTnburg
_ <=_1eTnbuts-sedil eijedq TeqoTo ueys
! 139 ysey ewr] Auy @ 134 ysel ewr] Auy oyl
¢ odh)y sorqeTres QWYL Auy nwmmmhum> euty Auy
_ _ <= eur] Auy'sodAl_eieg TeqOTO usym
! 134 ysel OTPOTIed : 13d YFel OTPOTIed eyl
¢ odAl seTqerae) OTPOTIEg nMM eIIep DTpOTIeg
<= oypotaed-sedAl e3eq TeqoTD ueym
8T puTy °sed
‘@jee1d 03 oTqe o9 03 --
ysTa nok eyl xse3 3o puTy Areae 103 peitnbel ST esed ¥ --

+ zabejur a1 ysel zebejul

£ o0 = _ uoTiRINg ocqcﬂaswmﬂosﬂa
_ _ ¢ qI_ysel weisds qI_xseyl
¢ odAl pury ysey-sedArl ejeq_TeqoTd puTy yser
! QIITTIANOD =% edf] snjeis _ sn3els
¢ ewt) ' aepueTeEd ¥ peixels
{ emt)‘aEpPUSTED owt]l IS
VI K3Ta0T23°WeISAS £3tr0T1g
{00 =t uoTaeang _ potzeg
{00 = _ uotaeIng uotyeing rTeuorido
¢ 134 ¥ooTg Tor3U0) YsEL _ IXON
£ 00 = uoTIRINQ Joryeang Axojepuer
! ewty‘ 2RPUBTED auT] 3I1eIS IF9E]
$Q =2 zebejuy : eouejzoduy
! ewT}’ aepUSTED eurTpeeq
piodex

8T (DI0INId =: edAr pury Ysey : PuTH) edAr (ooTg ToI3u0) ysel edhy

¢ edA1 yooTE T0IIUCD_YSEL §FeODE BT 134°¥7 -TE_T1013u00_ysel ediy
(01Q0I¥ad =: odAL puty ysel : Pury) edA] YooTg Toxiuo) xsel odA3

¢ (g3IITAROD ‘QIA¥YISIA “TYNOIL0_QILIWII™A
‘LEOLYCNYW J3LIWITE3 “IYNOILILO ONILADIXA -
‘XJOLYANYW SNILADAXT ‘ONIIADEXE ‘AQVaY) ST edAy snieis edh3

‘peizeToep eie $308{q0 PAUTEIISUOOUN SWOS eFneseq ITNeJIP STYI --

C-22

! o =: zebequr : A3tI0T2g UerINn)

87 (onbeg-enenyd | v:ouuo porzeq uy : enend oyl
¢ edA1 epon ut OpOK_MeN)
89T3TI0T2d 4 ueyl sse] sysel d einpeooxd

! 30 pored pue
¢ poried gol eyl uiniex
_ _ _ utbeq
87 uoT3EING UINJEX (X3d YOOTH 1OXIUOY YsEL UT : gDl OYl) JO POTIed uoTIoung

-- 30 POTIed NOILONDA --

¢ jo_eoueizoduy pue
! eouezzodur-gol eyl uanjex

utbeq
87 1ebejul uinjex _ _
(234 Y079 TOIUCD YseL UT : €1 eyl) 3O eouelrodwl uorIouUNy

- 30 eouelxodwr NOILONAL -

{ JO euyTpesag pue
¢ eurTpeed 4Ol oYl uinjex
utbeq
8T ewTt] ' lepuafe) uinjex _ _
(234 %ooTd 10I3U0Y Yeel UT : €01 @Yl) JO euTTpEeq uoTIouUny

-- 30O euTTPEOQ NOILONAJ --

! ewty v:«uuuum 15838 pue
¢ emTl 3IE3S 3SE3eT gl eyl uiniel
utheq
87 ewT]'IepueTe) UINjel _ _ _
(x3d XOOTH TOIUOY YSeL UT : gil oyl) ewTl HUTIIRIS 3Ise3jeq] uoTiouny

- euTy buyirels Ise3seT NOILONAJ -

! euty “butjaels pue
! oWt 3TeIS’ mo.a eyl uinjex
utrboq
®T SWT]°Iepuaye) UINexR _ _
(234 Y20TE T023U0) ysel UT : gl Oyl) ewTl Huraxelg uoyIoUNy

_— ewtl Sutire3s NOILONAA ==

{_30 a1 _¥sej pue
! q1 %sel zebejur- mu.w oy, uinjex
_ - utbeq
sT 1ebejul uan3ex (134 XOOTd [0I3u0) ¥sel uT : ddl eyl)30 QI ¥sel uoTIoungy

-- 30 I A%®L NOILONAS --

! (1ebeju] <= j8biey
' ar xuaa wa3sks <= @0IN0§)
UOTSIGAUO) peYdeydun meu BY iebejul ol @I Ysel UOTIOUNJ

{ (0 <= sz0y30) =: edA1TBUTg OTPoTI8g : sUTE OTPOIIed TTNN
‘sutg OTPOT18g

! IRO¥3'enendy pexepip eoueiiodu] =: _ _
uoT3ed0T enend) peieprp eouejzodw] : 3Jucid enend eouelzoduy

! Movd-eneny pexeplo escueiiodwy =:
uoTIEeD0T] * enend_peiepig_eoueizodur

oeg Tenent) oo:nuuoa-&
¢ enbeq’enenly peiepo) eoueijrodur

end eouwjzodui dDTPOTIed

¢ INOWA'enend peieplo poTI8gd =: _ _
UOTIEDOT ONeNY pPeiepio poTIed : 3Jucid enend poried

¢ MovYg enend peiepid poTIeg =:
uotT3edoT” o:w:cl_uo...evuo potIeg

xoeq .:0:0 potieg
! enbeg-enend peiepi) porieg

vo:oa " Aq sysel
‘potied Aq dwey

¢ LNOYd: enendy peiepio o:._.dumoo LY
UOTIEDOT *eNeNY Peleplio euTTpeed

¢ MOVYd'enendh peiepip suripReq =:
uOTIEDOT * eNeNnY_peIepi(_suTTpesd
¢ enbed-enend pexepip eurIpeed

juoxy enend euTTpEeq

yoeq onoab suUTTPTEq
end eurrpeeq Ai03epuey
‘end eutTpeeq_TeucTido
‘end) eurTpTeq

LNO¥J* enend paieplio ewTl 3Iels_3seje] =:
UOTIED0T enend peiepig ewrl_3iels 3seje]
HoVg - enend pe1epin ewTl JILIS_INOILT =:
UOT3e00T - eneny_peiepig_owytl _3ieis_iseie]

¢ enbeqenend peiepi) OWTL IIEIS I8VIET

Juoxd enenyd ewTl 3ielS Ise3e]

1 yoeg enend_ewri_3leis_iseje]
: end ewTl 31e3s5 3Iseje]
¢ INOYd' enend pexspio ! owty 32e35 =i _ _
_UOTIe00] enend peiepip ewrl 3iels : 3uoig enend Apeey
!)OYd' enend peiepio ewT] 3IeIs =:
UOT3ED0T ' eNenY _peiepi(_ewrl _3Iels : yoeg enend_Apeey

! enbeg-enenyd peiepip ewT] 3IE3S and Apeey

hzomm 2..0:0 ar_: _)sel =: ucrTiesoq* o:osolnnlxmuh : U0 y_ Q:o:o ar_ >m syse]
¢ yovd-enend (I ysSeL =: uUOTIEDOT® o:onc aI_xsey : yoeg enend | ar_; >m sysey
¢ enbaq-enend) g1 ysel : a1 kg syseg

! TYNOILAC TTY =: @dAl UOTITPUOY OTPOTIey : UOTITPUO) OTPOTIeq

t 134 yo0TE TOTuUOH YsEL ysel_juelin)
.uum mu..r MON

‘gol dwey

¢ odKi sty ysey] : A8TT ysel eeij

odA1 epon - sedA1 ejeq TeqoTH SPOR_noN
! oWt} - repueTed Oc.S.vnon Xl

.oca._.maoo Ut
‘euiT] JuexIN)

uotyeing

0 potzed xey
0 =: 1ebejul

enyen peijdueexg
‘9215 uTg OTPOYaegd
*£3tr0T1d Iuezindy
‘zoqumN utg

uoT3eZTITIN_Teuctido
‘uoTIRZTITTI) peitnbey
‘uoTIeZTTTIN AX03PDPUCH
‘UCTIZTTTIN OTPOTISd

C-23

{ ejezedes sT (enbeg'eneny peiepio eouejliodwy Ut : eneny eyl) ! (6 ‘0l ysel aebejuIr- @il eyl) 3INd-OI]
Teuot3do sOTpoTied ewos einpaooxd _ utbeq
! ejeawdes sy (enbeq-eneny peiepi(_PoTied 3no UT : enend dwer ¢ zebesuy : QI ysel
{ enbeq-enend pezepiQ eoueirodmy uUT : enend eyl) BT (ueeloog 3NO : SMUTIUO)
_souelzodur Ag $OT31TI0T1d OTPOTIed einpevoid ¢ 234 YooTd TOIIUOD XSEL UT : EIL eyl)

-~

ejezedes ST 134 YOOTH T0I3U0)H XS] UINIeX

(2ebe3ul uy : QI YseL eyl) I P

end poried Ag sysel eyl JuTid einpecord

utj uOTIOUNJ

(enend eyr) wutg Ag esieaex]

¢ ejexedes 8T 133 YOOTH TOIUOY YSEL UINjIex _
(zebejul ut : eouejxodul_eyy
{ ewyl'IepueT®) UT : ewTl 3I1e3S_eyl
! ewty- IEpUGTE) UT : sutIpweq eyl
{ yotyRIng UT potiag eyl
_! zePejul uy : PUTY_eyl
odAy pury ysel ur : odAy ey
! ueeroog Ut beyd AeTdsTq) @31 389 uor3oUN]
—————— - SNOILONAS QNY STYNQID0Ud TYNYIINI

et ¢ (urg Aq 803TI0Tid OIPOTIOd <= §88001J)
e31e103] Onend peiepi polied meu sT surd Ag esieser] einpesoxd

¢ (sysel oTPoTied UON ATUQ_3uUTid <= 9800014)
ejexejl] enend (I yse] MOU ST sysTl u«voqnom UoN wna
! gysel oTpoTied uoN AT
! enx] =:

4 ocnq LU OH
‘3T
£(€L’ (oWTL 3XWIS 315827 GOl OYL) SPUOR0S - IBPUSTED) NG OI OEﬁh
ueyl TYNOILLO_(QILAWITA = SNILIS €01 _eY

20 XBOLVGNYW QdldWIdig = snielg: 017 oYy 3T

! urg Aq 8@3T10TI1g OTPOTIeg pue
! enil =: enUTIUOD

14_eanpeocoxd ¢ Karaorag uexind -~ A3Ti0114 OTPoTied 3xeas =i A3TIoTad 4ol eyl

uQ UTIg pue ! JT pue
enutuo) ! 3T pue
{37 pue ¢ 1 =: (Z9CEUmMN uTqg)BUTE : uqﬂoau0m
IASL P T+ Toqumy UTg =: Toqumy utg
pue ! 1 + A3Tr0Tag FULaing =: A3TIOTId JUGRIN)
esTe
1L TR

(Tequny uTg)surg OIPOTI®d =: (IequUnN UTH)SUTE DTPOTIed

8613710114 d ueyj eIoH sysel 4 pue

utbeq

! (6 ‘(snje3s-gdl eyl)sod,edAl snieas) Ingd*oI_3ul ueyl 8zYs urd OTPOTIed » (ASQqUNN uUTg) BUTE OTpotied IT
! (g .ooaauuonan g3l e84yl) Ingd'oI ul uey3 ¥OTITIOTIJ OTPOTIed FO IoqumN > Iequmy utg IT
! 3T pue {31 pue
(. A 743 «) 303" QI 3X8L ¢ { a1 yser- DI .41
_ - - esTe .uoanﬂ4u¢> OTPOTIAJ gl oYl) sarqeriep Ououm syse], oavcHuum
¢ (€ ‘L ‘(3¥ Pe3Ie3IS gDl eyl) spuodes- iepusted) Ind ol ouTl ! @POW MON =: @POK‘SOTqeTIeA oavoaNOm €00 eyl
ueyl TYNOILJO_ONILAOAXT = #UILIS GO —eyg ueyl PO MON =/ OpPOW’SeTqeTIvA OTPOoTieg gol eyl JT
20 AYOIYANVW ONILNDIAXT = snyels” R eyl 3Tt utbeq
f (g ‘L ‘(eulTPeeq-go]_eYl)spuodes IepueTed) Ing-0I_ewr] 8T (ueaToog 3INO @ BNUTIUOY _ _
¢ (g ‘s ‘(emty 31e3s gL , eyl) Spuodes IepusTe)) Ing-OI_swrl ¢ 238 yo0T@ 10I3U0) Ysel UT : gIL Oyl) urg Aq se3TIOTIg OTporied einpecoxd
! (€ ‘s ‘buyurewey ewr'gdl @Yl) Ind'OI_OWTL _
! { € ‘9 ‘uoTyerng yeuoT3do-EDI_SNLI) INd*OI_eWIL £ 1 = jebejuy : aequmy utg
¢ (€ ‘S ‘uotieand AIojepueq-g@dl_eyl) Ind Ol ewrl t g =: xebejul : K3TI0T1d IUSIIND
f7(6 ‘a1 ysel xebejur-gdl eyl) 3Ind' oI Ul _
uey3 QILITIWOD =/ SN3Ielg @dl eyl 81 (enbeg-eneny pe1spig poTied ur : enend eyl
uey3 pue DIQOI¥Ed =/ PUTH ysel-€dL eyl JT # odAL @pOW UT : ®POW_MeN)
utbeq 80TITI0TId d UeYl @I0K sXysel 4 exnpeooxd
¢ zebejul : QI Xs®l -
8T (weeJoog NG : BNUTIWOD e
f 233 A0OTH TOIIUOH Y®ey Ut : @Ol ! eyl) - -

s)sel OTPOTI8d UON ATUO 3UT

24 exnpesoad -

sys®] OTpOTIOd UON 3IUTId THNCA

Dodd '
LN | eneny oyl) potied Ag ubtesy

¢ (end potreg Ad . anmh 8yl 3uTig <= $seOO1q)

238103 "8Nany PeIePI0 POTIGd AU ST PoTied Ag sysel juT
¢ endy | poTied Ag sysel o

! eniy =:
! sutT MeN®
! ((9POW'SOTqeTIBA STpoTied gol oyl)ebewms,edAl epoi

? .

! (01 ‘(A3TI0T24 €01 @Yl) 1ebejur)
! (6 ‘ecueiizodwI’go]_eyl) 1IN,
HI w ‘puTy uﬂaﬂﬂqum»luﬂvOANQm g€o1_oeyl) In
! (¢ ‘G ‘uotjeang reuoradorddl_eyl) Ind”
! (p *9 ‘uoyieang AzojepueR'€0]_OYl) 3Ind"
! (g ‘¢ ‘poTzed-@dl eyl) and*

w) 3ng’
n,

! (porieg Ag SeTITIOTIJ <= 590014)
@3e101] ' @nenly pexepio poTIed Meu st vo~uom | Ag ubtssy einpesoxd
! poriegd Ag seT3iTIiOTig pue

13_eanpeooxd
! enay =: enuTIUG)

Yl 3urId pue

enut3uc) ¢ 1 4+ A3rzorag auexand =: A3TI0TId IUIIND

01 Ixel ¢ K3TaoTad Juezan)y - A3ITIOTId OTPOTIad 31e3s =: KITIotad 4ol oyl
‘3T pue

01 axel { (Q1 ysel €3l_eyl

d°0I_3ul .noanmnu~> STPOTIed L O4l) SeTqeTIes 8I03S'SYsel Otporieqd

d°01_3ul ! 8pOW MON =: @pPON'SeTqETIEA DTPOTIOd EDL Oyl

d* 0l vl ueyy OPOW MeN =/ OPOK°SeTqeTIeA OTPOTIed-gdi oYl 3T

o1_euty utbeq
01 osdh ST (uesyoog 3NO

oI euwty ! 234 ¥00Td TOI3u0) AsBL UT

enuT3uo)
go1 0yl) poried Ag #eT1rTioTid eInpedold

80TITIOTId 4 Ueyl S5OT syse] g pue

utbeq

C-4

*yse] BUTTTED eyl 03 1e3utod #37 uUIN3eI pue gIl © ~-
#3e010 03 sOxe] 3T 8¢ HBUOT se ATUO BT BI8Y BNOAZOPUSI Oyl -

_ 4 (_sduwod 3sey ‘sysel OoTpoTied 30 1equmy _
‘sxse) 4N 30 unN ‘ewt) dois 188l ‘ewTl 3ielg 389l) sew|l piodey
! yoo1d' 1epueTed =: auwrl dols 3’}

_ { (_go] dwel) peijerdwos oTpoTied uoN
! ((yseyl pejerdwod) aebejul ol 4l ¥sel) €Il PUTd =: €01 dwey

_ _ { e3a]duwoy ysel pue
! g1 ysel ey =: ysel pejejdwopy
- ! ¥OOTD IEpUBTED =: GUT] JIBIS 189]
op (GI ysel-weisis ut : QI yeel eyl) e3jerdmo) ysep idecoe

10

10
! s3Tnsey s8] jutag pue
- _ ! 37 pue
¢ 8y®el OTPOTI@d UON_3IUTIJ
ueyy_g = 318l syl jTsTe
{ sysel OTPOTI@d_3uTid
_ Ueyl ¢ = 3mel eyl jTsTe
! (3Isel 8Yyl) sewrl 3801 UIId
- ueys 9 => 386l eyl 31
op (1ebejul uTr : 3sel eyl) s3Tnsey 38l jutigd 3deooe
pEL 1
"IFTXD -—
30U POOp IBY3I YFEJ € SAOWEI O3 JUEM J0uU Op nok pue peppe ueeq 384 --
30U sey Jeyy Ysey ®_AZTpow 03 JUEA 30U Op NOX " SISYIO OYI ULy} --
‘jysel eAoWel ueyl ‘yseyl AJTpow ueyl ‘3I8IT] euop ST Ysel ppe 3Jey3 OF -~
sprend ueys eyl jO esn oYl Y3ITA peurjep ATITOTTdXe ST 10pI0 oYyl --
doot

! @ZITETITUI pue

! (®ysel_dN_jo umN
‘syse] OTpoTied 3O Zequmy
‘UOTITPUOD_DTPOTaed
‘uoTIezTITIM)_peitnbey
‘uoT3e2YTTI TPuoTIdo
‘uot3ezTTTIN AI03WpPUEK
‘UCTIZTTTIN OTIPOTIAd

“Y00T) IepueTe)) sn3eas zebeuey ysel-ssecoxd butuosesy

op eztreT3TUL

! Q1 ysel-weisis

T1' 2epuUeTed

adeocow

utbeq

1 : ysel pejerduo)
! swrl-iepuoTe) : SWTL ITBIS_MeN oyl
! ewr 1 euTTpeeq mey oyl

‘ewt] 11elg_ 3891
‘eu] do3s 3sel

! uot3eINg

PoTISg meN eyl

‘eutl_ppyY

! ueatoog
«uovoucn

Kerdstq_meN_eyl
eouwjaodu] meN eyl

‘sysey gN umn duey
‘a1 ysel meN

81 1obevuen ysel Apoq ysey

- 20beURH y®e] AQOd NSVL

(ebeydeq iebeuey ysei) eieredes

! ejezedes »1 | 2ebajuy ut
{ejexedes st (Aezay m.:au>.unow ne
! xebejur

! zebejut

© ewyl'iepuere)

! ewtl' TepueTed

! ebeyoeg ieHeuey ysel pue

¢ ejeiedes st uwuacmmlxnnh Apoq xee3

1equmy 388) sewTi 3sel IuTid sinpesord

ut
ur
ut
uv
uTt

¢ ejeaedes o
! ejeredas st syse] OTPOTI®d UTId exnpedoxd
! ejeredes sT uoTIEINP UINBI sysel yojedsTg uoTIOUN]

! ejeiedes T weeTc g uINeIX
(eul [1epueTe) :
- _! ewt -Iepuele) :
{234 yooTd [023UC) XYsRL UT

! ejezedes sT ueeTOLq UINe

Ae13y oyl
8} d_umN
sl Jy wnN
out] dois -
euwrl 31235) SeWT] pIodey einpecoid
81 sySe] OTPOTI@J UON_3uUTid exnpecoad

o7l 31w35_MeN

QUTTPeO]_RON

gol eyl) eTqrsees POTITPOR UOTIOUN}

(13g ¥007@ T0I3uU0D Y®EL UT : @] OYl) OTqTIEa3 uoTIDUN]

! 9323edes 81 (1ebejul

! euT]’ I0pPUSTED

! auTl'20pULTE)

! ueeToOd

_ _ ! uotieing
f134 YO0Td TOIjUO0) YsEL UT

! ejexedes_st _ _
(X34 Yo0Tg§ [oIju0) Ysel ur :

eocuejzodul” meyN
euTl 31R1S _MON
eurTpesy_meN
Aerdstg_meN
potied _meN

gol eyl) AJTpor einpecocid

_€go17eyl) peiejdwod OTPOTI®d UON einpeooxd
¢ ejeredes sT (23g YOOTg TOIIUO) Ysel UT : €11 @Yl) e[npeyds un einpedcoid
! ejezedes ST (13d Y0078 [OI3UOD YBBL 3INO UT ! @)] @Yl) @INpeyos einpecoid

! ejeredes st ®OTITIOTI4 OTpoTieg ubtssy einpesocad

C-25

<= (= UNOY, xn«k eAcwoy
ueyy pue (= Juno),ysel AJTPOW
ueyy pue 0 = 3unod, yeel ppY
ueyl pue (= u::OU.UUOAWﬁou y8E] ueym

_ — - 3T pue
! (suey 3se] ~aana OTpoTIed_jo_1edquny
‘1T + ®sel dN Jo amN
‘ouTl dois 3Isel ‘euTl 33e3I5 386y) sewTl piodey
esTe
(_swey 3seL ‘[_+ 8YSel OTPOTIed 3O IequmN
~uxnmk dN 3o umpN ‘ewtl do3ls 3Isel ‘ewT) 31IBIS IS0l) _sewTl piodey
uey3l DICOIWAA = PUTH ysel- dpl dwel 37
{ ¥o07)'1epuete) =: awrl dols Isel
£ (={sel gN_jo umy
‘sysel oTpoTied 3o Xequny
‘uoT3ITPUO)_DIpPOTied
.=0auauqaﬂuplku4=voz
‘uoTyezTTT3] rRuoTido
‘UOTIeZTTTIN KI03EPUER
‘UOT3e2TTTIN OTPOTIRd
‘¥00TD" IepULTE)) SNIBIS Iebeuel ysel’sse001q butuOsEey
¢ (o1 dwey) eTnpeyos un

ysel eaouey pue

f (g1 ysel eyl) €01 PuTrd =2 mual&ﬁok
{)O0TD'IePUSTE) =: OmTL 3IXLIS 3IBLL

op (2ebejur uTr : QI ysel eyl) ysel eaowey 3desoe
<= 0 = JuNno),ysel AFIPOH
ueyy pue 0 = 3unoy, ysel ppy

uey3 pue (= UNOI, wquQBou yseL Ueym

! (SpoW 1se] ‘sysel OTpPOoTIeg 30 Iequmy

‘sysel aN uo unN ‘euty dols Isel ‘ewr] 3iels IS8l) mOHda pxodey

¢ YOOTI* ITPUSTEY =: SWT] QOum 18081
(sysel dN_jo umN
~mxuah OTpoTIed jo Iequmy
‘UoT3TPUO)_DTPOTISg
‘uoT3IRZTTTI_pextnbey
‘uoT3eZYTTIg TRuoTido
‘uoTIRZTTTIN Az03RpUEH
.:oauunuﬂaub oTpoTaIad

‘¥D0TH 1EpUdTE)) Snje3s zebeuey ysel-ssecoid buruosesy

! 3T pue
! (ar ysel 1ebejul‘'gol dwel) ysel eTqTSEeIU]’ §IODOXJ u:«:ommwm P
! (,>>> eTqrseejul AJTPOH <<<,) BUTT Ind 0l IXeL
-2
N eouejzodur :oz [oyl T
.osaa uunum MON oyl .o:aavmon meN oyl
‘AeTdsTq meN eyl ‘poyieJ meN eyl 'gol dwel) AITPOW
ueyy (ewTl 3Ie3S MON Oyl
‘euTTpeed meN eyl ‘9ol dwel) olqrseei POTITPOR FI

¢ ysel A3TpoW pue

H oocduuoasmlaoz - oocmauomﬁm 302 [eyl
! emry” uumum MON =! ouTl 3Ie35_MON_ eyl
! euTTpeeq MeN =: euTTpeod_moN eyl

H auannan MON =: KAeTdsTq_meN_eyl

! poTiegd meN =: potiegd mey eyl

P nH ¥gel eyl) €I PUTd 801_duey
¢ §OOTD ' IEpUSTE) =: eWTI] 31LIS ISeL

op (zebe3ur uT : ar ysel_eyg
! 1ebejul : eouejzrodui_meN
! ewrl'IEpUETE) : GWT] 3ITIS_MON
! ewr]-IEpuefe) ! SUTTPEed_meN
! uvotaeanqg : poTied MeN

10

X0

! ueetoog : KetdeTa meN) ysel >uavo= adedow
<= (= 3uUN0D,YFel PPV
ueyy pue o = 3uUNOY, ouoanaou ysel ueym

! (SppY 1se] ‘sysel OTpoTIed 3O IequnN

‘mysel” aN wo uny ‘ewt] dols 3Isel ‘ewr}l 311e3s 3sel) noSaH paooey

{ ¥o0T)"IepueTe) =: ewrl dols I8l
(9ysel_aN jo uwmN
.nxmak OTPOTIag JO IBqUMN
‘UOT3TPUO)_DTPOTI8d
‘uot3ezTTTIn_peitnbey
‘uoyT3iezTTTIg TRUOTIdO
‘uoT3BZTTTIN A303RpUER
‘U0TIeZTTTIN OTPOTIed

‘Y00To* 1epueTe)) snlels 1ebeuely ysel 580013 HutuOSESY

¢ 37 pue

{ esed pue
f (a1 ¥sel 1ebeiur-arl dwey)
ysel e[qIseeju] ‘ ssado1g buTuoseay
{ (g0y dwey)_eTnpeydg up
! (4>>> 10117 ernpeyds ieTnbuTS <<,) SUTT INJ'OI IXSL
<= UVYIOONIS ueym

¢ (QI aseyl 1ebejul-gyl duwey)
el eTqTseeju] - s8e001d buruosEey
! (|ol dwe])_sTnpeyss un
! (,>>> 10133 oTnpeyss ewt] Auy <<<,) @UTT INJ'OI_3IxXel
<= FRIL ANV uoym
‘we3sis eyl WOlIJ peacwel ©Ie SYSe] DTPOTIBI-UON -=
¢ (@0l dwe]) eTnpeyos
¢ (,>>> 10117 OTNpOYDS DTPOTIOI <<<,)} OUTT 3Ind'0I INS]
<= DIQOIY¥Y3dd ueym
‘eTqTSRe] ewooeq Aew Aey3 ewTy einjny B e —-
esneoeq peTnpeyos TTT31s aie sysey orporzed eyqrseeyul --
81 pury ysel-gol dwe] esen
esTe
¢ (gol_dwel) eTnpeYOS
ueyy (g0l dwey) erqrsees 3II

-£7{eso1o exom --
peuTwexe eq prnoOYys OTGTSESIUT 5188 Ysel eyl seyew eyl ysejz --
mou e Y3iTA Op 03 jeym AT3oex3y ‘weTqoid 8y3 JO eIemr opew 03 —-
speeu ssedccid Hutuoseslr oYl ING ‘paTnpeyds eq O3 Speeu TTTIS --
3T ueyl ‘3ou ST 3T JI -eucp 8I,em pue 171 enpeyds isnl ueyy --
ST 3T 31 -oTqTSEe; ST ¥Sel MeU oYl JT @88 pue YO8yd 3I81T4d --

ATel PPY pue

! QH Tysey uwoou:H gol dwel =: QI ¥¥el meN
_ _ ¢ (eoueizodwy_eyl
‘ewrT] 3IE3S Oyl ~o=wwvmac oyl ‘polied eyl
‘pury eyl ‘edAyTeyy .mmE KeTdst@) €21 309 =: doi_dwey
AO0TD IepUSTE) =: SWTL 2IILIS 388l

op (aebezul u:o : a1 xsel_meyn
¢ xebejur urv : eu:wuuoaam _eyl
ewr] " IepueTe) cﬂ T ewTl 3Ie3S_eyl
eyl IepUSTE) UT euTTpeeq_ oyl
¢ yoTieang uT poried_eyj
_¢ 1ePejur ur : PUTY_oyl
¢ odAy puty ysel urv : od4y eyy

! ueeToOg UT : berd Aerdsig) ysel ppv 3deooe

<= § = juno),ejeydwo) ysel ueym

10

C-26

¢ (enYy eouejzodur orporied) am:oava0|nu«voau0mlwsom
! 3T pue

¢ (poraeg AQ sysel ‘epol MON) S$OTITIOTId 4 ueyl BIoN uxuaa d
esTe

¢ (\poTied Aq sysel ‘OpoN_MeN) SeTITIOTId d_ueyl sse] sysel d
ueyl SeTITI0TId OTpoTieg jo uonsnz => 8)Sel OTPOTied jo lequmy 3JT
TYNOILA0 FTHOS =:! UOTITPUO) DTpOTIBg
H :o~um~a~aub »uoumvcwz =! UOTIeZT[TI OTPOIId]
¢ Kxojepuep’sedil eieq TeqOTO =: ®POW :oz

*@xouAue op 3,ued Tr3In Teuorido —-

03 308 el syse] juejzrodwT eyl jo mepom eyl ‘IxeN ‘peubrsse eie --
soT31T7I0Tad @Yl pue Axojepuew 03 3108 ©IP SYSE] [T® JO FOpPOW OY3 3I8ITY -~
‘o8 ‘uoTIEZTTTIN AJojepuey eyi 3Isee] 3e ST UOTIBZTTTI OTPOTI@d --

oy3 Lue syxed TeuoTido 1Teyl ejndexe ued ewos puw sjzed Aiojepuew --
176yl O3NOexXe uUed syse] eyj TTe Ueyy ‘eiey 3T oyew am 3II -

ueyy uoTILZTTTIN TeuoTdo > uoTIEZITTIN pelxtnbey jistTe

T pue
! (poTaed Aq duel ‘epol meN) S@TITIOTId d Ueyl OI0W nxuuawm
esTe
¢ (potaed_Aq dwel ‘epoW meN) SeTITIOTId d UeYl 8soT sysel d
ueyy #8TITIOTIJ OTPOTIed Jo I N
=> (poraed_Aq dwel) 30 YibueT-enend peiepio poTied JT
! (potaeg (Aq dwey
‘ond eoueirzodu] orpotried) eoueizodur Ag SeTITIOTI4_oTPOTIed
{_RYOLVANVW IWOS =: UOTITpuoy oIpoTIed
¢ (poraed Aq dwel) IeelD'enauny peiepiy poTied
om 0_=: UOT3IBZTTTI OTPolIed
¢ Kxojepuey’sedAl eieq TeqOTH =: OPON MON
*K371072d WO330q BY3 O3 —-
peubTsse eoq isnu siey3lo eyl pue sysej swos Jo sized Lrzojepuew -~
ey3 jo ewo® Op ATuUO UED em Ueyl peTjsTIEs 8T UOTITPUOD STY3 JI -

ueys uot3ezTTTIN AZOJBpueH > UOTIEZTTTIN peiTnbey 3IT

uoTIeZITTIN uoT3eZITTIN -

TeuoTIdo Kxo3epuey .-

| | --

[| | | -
1 0 -
TeuoT3do -->[<-- TeuoT3do -->|<-- KxojEpUEH --> -~
T ewog ouos -

*3zed Teuorado ®3T pue jxed Azojepuew ST --

yaoq ejnoexe TTTM YFe3 yoes ueyy ‘308)YSe3 3USIIND OY3 JO UOTILZTTTIN —-—
Teuotado ey3 ueyi Ie3eeib sT uoT3eZTITTIN peirnbex eyy JI ‘sized Teuorido --
1T8Y3 @anoexe TTTA sysejl jueizodwT 3som oyl ATuo pue sized Alojepuem --
1TOY3 ©3nDexe TTTA sysej o5tpoTied TTe uey3 ‘UoTILZTTTIN Azojeptew —-

oy3 ueyy xejeexb nq ‘jes yse3 orporied eyl jo uoTieZITYIN Teuoriydo —-
ey3 UPY) $SeT ST UOTIEZTTYIIn pearnbex eyl I -s3zed Axojepuew —-

110yl ©3N0exe 03 e[qe eq [TTM sysej juejzodur 3som eyl ATuo ueyi --
uoTIEZTTTIN AI0IPpUePW oy3l MoTeq ST UOTIEZTTT3IN Peitnbey oys JI °STTEF -—-
uoT3eZTTTIN peaTnbex JuerInd 8y3 8uTl ,ueTiezITTIn, oyl buote --

9I0YM SOUTWIOSP IONIITUO USYI-JTSTO-USYI-IT m:q:OHaow oyl --

¢ sutg OTpPoTIad TTNN =: suTg oTpoTied

*fexxe surq oTpoTied 8y3 Ino oI8Z -

97 S@T3TI0T2d OTpoTiad ubrssy einpesoxd

- §8T3TI0TId OIPOTIed ubTssY UNAIO08d -

(ebeyoeq zebeuey ysej) ejeredes

! 1ebeuel ysel pue

{ doot pue

! 3pe7es pue

¢ (syseyr yoaedstq) Aetaq

-Bbutuunx sT AeTep ay3 eTTym Jebeuewm)yse3 8Yl O3 dpew oq 03 --

SYTED SMOTT® jUSWeILIS 108TeS Oyl JO 8INIdNIIF 8yl ‘Inddo 03 --
Speeu juaAe mcﬂaﬁvomum axeu 8y3 TTIun sdAejep ueyl pue pelrels -—-
aq 03 speau eyl ysel Aue dn s3rels 3817 Jjuemelwis AeTep STyl -

_(snd 158y ‘sysel oavoauob 30 19qumN
‘sysel aN . wo unN ‘ewr] dois umay ‘ewmT]l 31Xe3S I59)) mﬂ!aa paooey
¥O0TH* aepueTe) =: ewT} do3s Isey

¢ (sysel aN_jo umy
‘sysel OTPOTIed jo Xequmy
‘UOTATPUC)_DTPOTIBd
‘uoTiezTTTIN_pexrtnbey
‘uoTIe2ZTTTI] ﬂmcoauao
‘uotyezTTTIN K1o3jepuey
~c0auMNAHauD DTpOTIOg
‘Y00TD" 1epusTe)) sniels iebeuey ysel‘8secold butuoseey
! 3T pus
¢ sOT3TI0T1d OTPOTIOG UBTSSY
H oovnm UoTIeZTTTIN OTPOTILd
« (071~ (N/ O ﬁv s» 0°Z) » N =: UOTIRZTTIIN vouanuwm
{ (sysel OTPOTI®d JO IequmN) 3IBOTF =:
ueyly (0 < SYSel OTpPoTied 30 uonﬁaz IT

{ UOTILZTTTIN OTPOTIeg meN pue
¢ TTan MON =: jebpng UOTIEZTTIN OTpoTIeg
{_YOOTD' 2ePUSTE) =:_8WTl 3Ie3S 388
op (3eOT4 uT Hau: MON) uoTIEZITTIN OTPotied mey adeooe

X0

C-27

¢ ysel jueizny_jdwesarq pue
! ysel u:@uu:u MoN =! ysEL JUSIINY

! (QI ysel‘ysel juexin) meN

‘K3T10T24 buTInoexdy) A3Ti0T1d 308 BurysRLX A
— _{37 pue

! TYNOILJO SNILNOAXA =: SN3els Ysel Juexin) MmeN
osTe

! KYOLVQNWW ONILNDAXI =: SN3IBIS ysel juelin) mey

uey3l AYOLVANYW QALINEANd = SN3els yse]_juelin)_meN
20 XQVIY = SNIEIS YGEL IULSIIND MOy IT
! Y0OTD" 2EpPUBTED =: IV PeIXeIS YSel jueiIn) MaN

! (yoeqg enend ewr] uuaum 3seje]
‘ond oﬂqk uuaum 3se3e1
‘ysel juexin)_) ppyY-eneny peiepiy ewTl 3Ie3s 3s03eT
¢ (yoed enenp_surTpeed
‘end eutrtpeeq
.xuaa uexIn)) ppy‘enendy peiepio euttpesq
¢ ButuTewey ewtl'ysel_juexind _ _ _

- QUTTPeS(Q X#eL 3JU6IIN) =: euwTl 3IXLIS uuoumq.xwwh Juexin)
! 1 pue

! 170 =: butuTEWey emWTL-ysELl unouunu
ueyy (' > butuTewey ewt]‘'Ysel juexind 3T

‘eaTi®beu butob wozy HuturEwer-owTy oYyl sjueseid esnerd --

4l STYJ -UOTIBZTTTIN Iosseooxrd TTnJ eya burAey jou ino 03 enp -~
sT syl “‘bBuoia eq [T1TA Buturewox ewry pejotpexd ano jeyi ATeyTT --
8T 3T ‘we3sAs XINA IesnTiTnwm ® uo HUTOT(S ewr3 ey3z o3 eng -

¢ ((I¥ pe3rels-ysel juexind
- ¥DOTD aIepueTe)) 2BOTJ) uUOTIRINg
- butuTewey ewt]’ ,")Sel juexIn) =: HBuTuTeWeY OWTL'YSel JUein)
! (41 _Ysel')sSel jueIin)d
‘Kiva0TId peidweaxd) K3Tr0Tad 3105 Burysery A

- ! 3T pue
! RYOLVANVW G3LAWITYd =: Sn3e3s-ysel juexind
_ _ osTo
! TYNOILJO GILIWITIYd =: sniels-ysel jueran)
ueyl TYNOILAO ONIINDIXI = Snjels ysm] jueiind 37 5
_ _ — utbeq
8T (I3d Y°0Td TOIJUOD YFeL UT : Ysel JUexInd MeN)
ysel juexiny jdweexrg eanpesord
‘euUTTPES] pue ewTy 3le3ls 3seje] ‘sensnb eyl O3 3IT ppe pue SNIeIF -
pue AjTzoTad $37 ebueyo o3 peeu nok ¥se3 Juexind eyy jdweerd o --

- ysel Iueiin)y 3dweszd FUNAIIOEd --

¢ 134 yooTg TOAIUOY YSel : €Il eyl

ST uoT3EIND UINISX sYysel yoaedsTq uotioOUN3

‘euTy 3IEls

3IXBU 8y I0 SUTIPEEP 3IX8u eyl JO I1esgeT eyj ST 6Jey uiniel anfea

eyl ‘-pe3jlels eq O3 pesu eyl uMOm z0y30 Aue 3138 03 pue seurtpesp
iTeyl pepeeoxs eaey jeyy sqol Aue TTTY ‘381Ty 03 ST exey qol eyl

_— sysel yojedsTad NOILONNI b

(ebeyoeg zebeuey yse]) ejexedes

¢ seviTiorad OTPOTIeg ubTssY pue

! esen pue

£ (,>>»> Teuorado TV <<<,) OUTT 3Ing-OI_3xel
<= TYNOILAO_TIV ueys

! (,>>> Teuoridg ewos <<<,) @UTT 3INg 0l 3Ixel
<= TYNOIld0 FWOS ueym

! (>>> K103vpuei ewos <<<,) OUTT INJ'Qf Ixel
<= AYOLVANVH_3WOS ueys

8T CO‘—.UEGOU OTpoTI®g Osed

! 37
L & vwo

(potied Ag Susel ‘OpOW MON) SeTITIOTId d Ueyl @IoK . nxunn d
osye

(potregd Ag sysel ‘epol_mey) SeTITIOTId d_ueyl sse] sysel d
ueyy §8TITIO0T1IJ OTPoTi8d 3o uonasz => SYSE] OTPOTIeJ FO lequuyN 3IT
TYNOILAO TTY =: UOTITPUO)H_OTpoTied
H =0nuun4a4u= TeuoTido_=: UQTILZTTTIN OTPOIled
! TUNOILJO' sediy ejeq TeqoTD =: ©pOW meN
*s3zed Teuotrido pue Lixojepuem 1TOY3l yioq bursn --
unz 03 SYSE] Oy} [T¥ O[NPeySs UerD em pue UOTILZTTTIn 1088ec01d --
Y3t warqozd ou ST @10yl usyl uted STYI 03 IT oyew am 3II --

pue

Cc-28

‘ewT] 3xe3S 38031 837 poydeoexr --

2T esneceq penpeyos j0u sea ysey butinoexe AT --

~-3uexind eyl pue §,jsel Hurindexe ATIuerand oyl elojaq ST --
QUTTPEOP §,%SB3 MAau 8y3 JT peyoeex 8T UOTITPUOD STYL -

! (yoeg enend_ewr] 3Ie3s_iseie]
‘ony ewyl 3iels 18P
‘gL eYl)
PPV’ enenyd pelepiy ewTl 3ieis 3seje]
¢ (yoeg enend surTpesq
‘arly euTTpeeq
‘g0l oYy) PPY’enenyd peiepiQ eurpeeq
f (Q1 Asel €0l eyl
‘Rataotad | peydueeiqd) K3ta0Tag 30S° m:axmubx A
! KHOLVANYW JILAWITMd =: snje3s g0l oyl
ueys euTTpPeESsd gDl oYl > SuUTTpeed’Xsel 3ueixny jIsie
‘uy3tiobie 3Is1Ty -~
SUTTPESD 150TTIE® Oyl MOT[O} oM esed sTY3l ul ‘buruuny --
pue pernpeyos ysey e sT ApeeliTe e1ey3 JT oiey j0b oM -

! gorTeyl =: ysel jusrand
f (a1 xn@a 4921 eyl
‘£3T30714 buTInoexy) >u4u0auh 305 BuTyselx A
! YO0T) " IvpueTe) =! Y PelIeIS gIl_oyl
! KMOLVWANYW ONILADEAXA =: snje3g-gol eyl
ueyl} [TON = Ysel Juexind 3T

‘pe3iels pue --

A3trotad 3seybTy eyy ueatdb sT Hurirels eie em ysej -~
oyl ueyl ‘iou st ereyy JI ‘A3Ti0Tad OTPOTIBI-UON --
3seybTy 8y3 e HuTynoexe ATjuerind ST eyl ysejl --

¥ ST @Ioy3l T 895 03 S5YDOyo esneyd 3JT ISATI oyl -

¢ (a1 ¥sel-gol eyl))sel eumsey:burxselx A
! esed pue

¢ TTOU
<= SYIHIO ueysm

¢ (ar TysRy HIL_! ..O4L
.annmqum> 1eTnbuts-dol eyl)_
seTqeTIe) ©1035°8ysel IeTnburs
! gAYl =: enuTIuc) seTqeTIeA IeTnduTs gil eyl
<= YYINONIS ueym
! { a1 ysel gol_eyl
.modnuauw> euty Auy gol eyl)_
seTqeTIEA ©I101S- sysel eut]_Auy
{ 9NNl = 8nUTIUCD'IeTqeTIEA ewTl AuY €Dl oyl
<= FWIL ANV ueym

T puty ysel 4ol oyl eseo
¢ ((jebpug uoTILZTITTIN OTPOTIAd - 0°1) /
(uotjeing Axojepuel g3l Oyl) 3IeOTJ) uUoTiEIng
=: BbutuTeRwey owTl'dll oYyl

<= FRIL ANY | MVINONIS ueym

_3T pue
! (edx1Teur) 0a=vogom :b
‘pesn ST SUTINOI OTNPOYDS uUn 8yl o5 ‘YSey --
otpotaad STyl dols o3 ewry ST 3T ‘esed STY3 ul --

esTe
! (yoeg eneny humoz
‘onl . Apesy
‘g0l oYl) PPY°eneny peiepiQ ewtl aze3s

‘utebe pejnoexe oq TTTA --
37 os enenb Apeex eyj ut yoeq YSel eyy 8deTd -

! pua
! (%o0TD° zepUSTED
‘al xmua 1ebe3ur g3l eYyy)
BuTTpEa] POSSTH' 5880014 [butuoseay
{ porieg dol eyl + _ -
3o07D’ IepULTED =: eWTL 3Ie3S 4Il oyl

rgseooxd butuoseex eyl AJjTjou pue emri BITYI --
y3Ta spotied @y3 3ie3sex os porTied 8yl pessTH —-
<= eumsey prTeAU] HuTySeLY A ueys
uotideoxe
¢ ONILADAXT =% SNILIS EIL oYl
! poried-gol_oyl +
ouTl 31e35:g)1 Oyl =: ewrl 3Ie35’@dl eyl
¢ (QI yseL €Dl _®yl
‘KytaorTag” go1 oyl) >u4uoaum Pt TN u:axuakx A
¢ (QI ysel €Dl eyl) YSel eumsey-bBuTAsSEIX A
=ﬂoon

‘euTTpEep POSSTW B STEPUDNTS 3BY] OWNSOI PTTRAUT --

ue exnjded 03 @IN3ONIAIS GNI - NOILJDAXI - NIDIg © --
uT ST TTe2 ysel oumsey oy3 eyl ejoN -Aivrovad -
S3T 3188 pue YSe3] 8yl OWNsSeI_ ‘o8 384 8wWod 30U sey --—
yse3 OTpoTX 8TY3 203 ewt] doig/eutrTpeed eyl -

ueyy YS0T" IepueTe) < eurTpeeq ddl eyl 3T

*)se3 sTY3 do3s 03 ewr3 §T 3T JT @es 03 YDey> 3IsaTI -

<= DIQOI¥3E ueym
ST PUTH YSeL €Dl eyl esed
¢ (juozgd enend Apeey ‘enyy Apeey) dod-enend | vo»QOuo QSAk 31038

dooT Y00TD Iepuete) => OowIl 3185 @Ol eyl efTya
¢ (end Apeey)JO 3IUOIJ-eneny peispio ewtrl ILIS = @OL eyl

utbeq
8T sysel dn 3jiels exnpecoid

- sysel dn 3leis JANGIIOEA

¢ uoTIOV axeN TTTL Aeted pue

! JT pue
¢ Keteg eyl uinjex
egTe
{ 3T pue
! ReTeq eyl uinjex
este
H »maon dwe] uaniex
uayy KeTeq oyl > Aeyeq dwel IT
! Y007y IEpUSTED -
ewTl 31B3S aseqeT” (oany QEAH uumum ase3e])
JO uoag-* enond | peiepiQ owrl 3ITIS 3803ET =1 >MAOD dueg,
uoyl (end ewrl 3ie3s 3seie)Aiduzy si
‘anend peiepip ewTl 3Ireis 31sele] 3Jou JT
! 37T pue
! yooTn" aePUSTED ~ SUTL IIeIS (OnYd Apeey)
3O U014 enenyd pelepip ewtl 3re3g =: KeTeq eyl
ueyy (end Apeey) Aidugy eI‘enend peiepiy ewrl 3ILIS I0U 3IT

utbeq

¢ uotryeang : Keyeq ¢ dweg
{ 10°0 =: uorieinqg :_ KeTeq eyl

ST uoTjeINP UINISBI UCTIDY IXON TTTL hMAOQ uoT3d>UN3

-- uOTIOY INGN TTTL AeTeq NOILONAJ

Cc-29

3T pue
! { ¥ooTD" aepuete)
‘ar xuaa 19bojuI"gDl OYl) PuTTpESQ PeSSTH §8800I14 buTuoseey
£ (°9dL eyl) enpeydss un
esTe

! 9ol eyl ysey jueaIny

! { 201D aEpUATE)

‘a1 %Sl Iebe3ul-ysel juexin)) eurTpee] pPessTH sseso1g butuoseey
{ (ysel juexin)) eInpeyos un

¢ eouejrodur‘gol eyl =: enfep pejdweeid

ueyy ontep peidweaid > eouwi

*@UTTPEOp 83T SSTU [[TA pue pejxoqe ST Yse3 10Ylo eyl --
*enuT3uod 03 eouejxodut 3IseyBTY OY3 YITA XYSe3 eyl smoyTe --
3xed STYL 'OWT3I YOS OU ST @iIeyl ueyl eley 3T oyew oem I -

! (g3l eyl) ysel juexany jduwesid
¢ (juoxd enend ewTl 33035 _3sejel
‘only ewt] 3Ie3$ 3%63eT)
dog-eneny peirepio ewT]l 3135 38037
£((ony eurTpeeq ‘@Dl OYL)_
30 UOT3IT804 enend peiepi(_suripesq
‘ond eurTpeaq)
W31 eAcwey enenyd peiepip eutTpeeq
uey3y (YSOTD IepusTed ~ eUTIPPe(Q XsEl Iuelin)
< bututewey ew1l°¥sel juexin)) JTsTe
‘8T ovreyl 3Tt 37 sydweed --
pue yse3 Burinoexe ATiuerino ayj ul ewry xoeTs Aue 8T exnyl --
3T eos 03 syoeyo syl ‘TeuoTido yjoq jo Kirojepuew yioq ieyuire —-
s3zed ewes eyl burindexa e1e sysel yjoq uey, exey 3eb em 3I -

! (g0l eyl) eTnpeyos un
uey3 TYNQILdO QIldW3T¥d = SNIeIS EIL eyl
pUe XYOIVONVH ONILADIXI = Sn3Iwais-ysel juexind jTete

‘poTnpeyosun --
eq TT1ta enenb IS7 ey3 jo peey eyl 3e gyl oyl pue 3xed reuorido --
ue 1eano 3zed Kiojepuewm e 10AE} 6 uUSY] @m @16y 30D em JIT --

¢ (GOl eyl) ysel 3ueiany idweexg
¢ (juoxd eneny_auwrl_3iels_iseje]
‘ond aumtl 3ie3l§ 3sejeq)
dog:eneny peiepiy ewrl 1i1e3s se3jel
{((@ny euTTpEeQ ‘421 OYl)_
JO UOTITSO4 enend peIepi(_eutTpesq
‘onyy sutTpeEeq)
wel] eaouway- enendy pe1ep1y suTTpReq
uayl AYOLYONYW (ALJIWITYL = snIelis €Ol oyl
PU®e TYNOILJ0 ONILADIAXA = sSnielg-yse] jusran)d 3T

*3zed teuot3ydo --
737 butrinoexe sT eyl ysel e - dweeid shemte TTTM 31ed Azo3Epuew --
37 pejeTdwod jou Sey pu: BWT3 3IBIS 3jSOIe] 3T poyoreal sey --
Jey3 yse3 e jeys sorrdur STYL -ysel e jo 3xed Azojepuew oy3 --
3seeT ' ejefdwr. pue A13 sfemye o3 sT Abejei3s uerinds oyl --
¢ 37 pue

¢ 170 =: butuTewey ewry')}sel juexin)
conu 070 > buturewey ewrl'ysel ajuexin) JT

-eaTyEbOU HurTob woij HururTPWEI-oWTI OY3 Sueseird esnetd -—

41 STYL -UOT3IEZTTTIN 20§secord [Tny ay3 buTtaey jou Ino o3 emp -~
8T 8Tyl -buoim aq TTTM Bururewer ewri pe3joTvpead ino eyl ATeNIT --
8T 3T ‘we3sks XINN IesnTiTnw e uo BUTOTTS ewTl oyl 03 eng -

LY uouumum.xuma juexin)
xUOHU lepuete) P Jeoyd) :0~uu~=n
buTutewsy ewr]'Xsel JueriInd
=: BuTuTeWey ewWT]'Ysel juexin)

dooT_Y007" Tepualen => emTl 31835 380307 GD1 @Yl TTys

¢ (enD ewrl 3ie3s 3seie])3Q 3uold
‘enend peispiy ewrl 1ie3s 3se3e]

: 9ol eyl

utbeq

8T SYSel OTpPoTIed UON ©1npeyss ou;ﬁcuoua

© auWTI 31e3s 3Fe3eT ‘e°'T ‘euTipeep --
837 88TW [TTM 3T @x0jeq HBuTInOexe 3ieis 03 3Tem UED)sej e emTl --
ey3 jo pue eyj Teubrs pTnom 3jdnizejut eyl ‘ieutl e Aq pesned Xse3 --

ey3 ojur Az3ue 3dnizezur ue Aq poTTe> eq prnoys eanpesoid styl

. sysel oTpoTied UON e[npeyds IWNd3Inodd

¢ sysey dpn 311e35 pue
¢ dooT pue

-

enldy Apeey)JO IUOIJ‘enend peieply ewTl 3I1els =: @11 eyl

ueyy (end Apeey) Axdwy s’ enend pereprQ Owrl 11038 It
¢ esed pue

37 pue
! { ¥ooTD" 1epusled
‘ar xuua aebejul-€dl eyl)
Ocdﬂvwon UODBA! $880014 u:acowmom
£ (gol eyl) ernpeyos up
esTo

‘pepIeOsSTp ST XS} --
8y3 pue euUTTPEep S3T PesSsSTW)YSe3 oyl ey3 obessew --
e juas sseooxd HuTuoseel eyl O8 @UTTpPesp SIT 8I10jeq --
peTnpeyos eq jou [TTA Xse3 meu eyl ‘esed STY3 ul -
! gol eyl =: ysel juexind

! (a1 %sel-€dl eyl
‘Aata0t2d butanoexy) >uau04uh q08° unaxmmmx A
! DOTD" 2RpUSTE) =: IV POlIels €1]_oYl
! AUOLVANVR ONILOQEXI =: Snye3s-ddl oyl
! (ysel juexxn)) ernpeyss up
! 37 pue

! (Yoo7D"aEpULTED
‘g1 xmaa 1ebejuI €Il 9y)
euTTpe~] POSSTH ¥86001d buiuoseey

uey3 AYOIVANYW SN;i JEX3 = snielg-ysel juein) 3t

ceoeTd SIT UT peTnpeyos ST euo —-
meu 8Yy3 pue pepiedsTp ST 31T ueyla 3red Teuorado --
ue ST Yse; JUaIInd 9yl JI ewT3 IS Is8eler --
§37 peyoeex 37 esnedeq peTnpsyds 30U sea Xsey —-
8yl JT 038z oq pTnom enTep peidwealy -peidwesrrd --
37 euTipEep SIT SSTW T{TM SNY3 pue SUTI 3IILIS ~-
98037 $3IT peyoeal 3T esnedeq ' BINPOYODs useq sey --
yse3 Jue.Ind eyj 3ey3 8joN ‘~ouejzoduwr zeybry v --
3O @1e sanTeA IemOT ING Spiea)deq SH0OT STYL -
uayy enTep peidwesid > edouejzodu]ysel ueliny JTSTe
YaTe YB3 @Yl OS OwT} 3IeIS 3IS9EY[--
93T payseel 1T 9SNedS] PATNPIYDS Sem YFey --
JUOIIND eyl PuUe ‘S, YSe] M8U OYJ ueyl I18TTIed -—-
ST OUTTPEeP §,)SB] JULIIND eyl ueym utod sTYI Yoeer -~
oM "euTTpESp ® ISTW IYbTw 8ucemos mou ‘Aeyo -

£ (831 oyl) yseyl jueany uQEdOum
uey3 3ser,I18bejutr = ontep peidweerd jISTe

C-30

! eTqTSeed pue
! osed pue

! 3T pue
! esTel uinjex
esTe
¢ enyl uInlex
_ _ ueyy (uoTieing Xsel UTH
< (ewT1T31235°@31 @Yl - SUTTPEOQ €Dl °Yl) IEBOT})
uey3l pue (UOTIRING %Sl UTH
< {YD07D° IEPULTE; - BsUTTPESd €Il BYL) 3IeoT}) 3T
£ (UOT3IeZTTTIN OIPRTISd ~ 0°T) / _
(uoTjeIng AX03epuBK @Dl @YL) 3IBOTd =: UOTIEING XSEL UTH
<= FWIL ANV | UVIAONIS ueys

! 3T pue
! esTed uinzex

esTe
_ ! enzl uinijex

ueyy UoTIeZTTTIN pexTnbay => uoTIEZTTTIN OTPOTiad IT

<=_O1Q0I¥dd_ueym
ST puTy ¥Sel'gdl eyl @seo
utbaq

! 30T @ UOTILZTTTIN TRUOTIIPPY
‘uotieIng ysel UTW

ST UR@TOOQ UINI" I (I3d YO0 TOIJUCY XSel ur : @il eyl) erqrseed uoTIoUNJ

‘30U 8T sysel IeTnHuTs 10 --

ewr3 Aue 18Yio JO I0ej3e oy3 Ing 3901 A3ITITQTSEs] oYl UT Pepniour ST sysej --—
otporiad Jo 310933 Oyl MOU JO SY OUTTPEeP 83T eiojeq ysel oyl jo ixed —-
K103epuru ey 3Ises] e 83eTdwo> 03 $3FTXe owry Ybnoue Jr butuTmiel8p JO --
935TSUOD XO8yo A3TTqTSeej oy ‘Xsej re[nbuTrs 10 ewry Aue ue Jo esed ay3 ul --

.uozw:m.omamu.mmu@mvcmmUQOﬁva»nuﬂnu mammu um:uouavwoouaonu>nnn
,888001g butuoseey, eyl o. yoeq perreubls st roixe Auy ‘pe3ze3s ATTenidoe ST --

3T @10j@q SUTTPEsp %31 196w ued 3IT ILY3 einsuT o3 Xsel orpotied peppe ATmeu --
Aue uo 3se3 A3TTrqEeOrnpeyss OTuOjIow @3elx e suiojred einpedcord STyl --

- erqrsesd NOILONNA -

(ebeyoeq zebeuen ysel) ejreredes

(

uay3

¢ gysel yoiedstq pue
¢ uoT3oV¥ 3IXON T1td AeTeq uiniex
_ ! 37 pue
_ _ _ ¢ sysel otpoTied UON eTnpeyds
uey3 (end ewrl 3Ixe3s 3Isage7)A3dwy sy _
*anenyd raxepiy OWTl 3ILIS 3ISeIeT 30U T
e~ ' 37 pue
_ _ _ ! Mxmmhlab ¥ -FY
uey3 (ond Apeey) Aadwy s7'anenld peispip ewrl IIBIS ION 3T
utbeq
¢ sysel DTpoTIed UON OTnpeyss pue
! doo1 pue
! 3T pue

end euwTl 313G 35@3ET) JO U0II _ _
*8nand peiapip eWT] 3Iels 3Isele] =: gIl eyl

(end ewtl 3Ie3s 3seyel)Aadwy s _ _
‘enend pexspip ewTl 3Ie3S 3ISOIeT IoU JT

C-31

¢ (uotjeang TeuoT3do’ 134 G231 _MeN

‘uotieang >u0umv:mz 134_€51_meN

‘q1”ySeL " 13d_gDl_MeN

‘134 %sel 1eTnbuts eyl- 134 80l _AeN
‘seTqeTies 1eTnbUTS 134 g1 MON) eijeern sysel zeTnburs

{ INYL =: OnuTIUO) seTqeTieA_leTnbuts' 134 GOI_MeN
H vaﬁm Ketdstq =: Ketdstq* soTqeTies_1eTnbUTS 13d_gII_MeN
UCa..vn YL =: PUT) - SBTqeTIEA uﬂaswﬂdm a13d 821 MeN

<= ¥VIAONIS uays
¢ (uvoryeang Teuotido- 134_gol_meN
‘uotyeang A1o3jepuel- 134_HOl_MeN
‘Q1 Y5l " 33d_601_MeN
‘134 ysel oTpoTiad eyl’13d_gol_MeN
‘89TqRTIRA OTPOTIRd 13d €01 MON) 93eal)’sysel oTpolied
! AMIL =: enuTU0D'SeTqeTIeA_OTPOT28d’ 13d_HDL_MeN
! mmahI>MAMuﬂn =: Aerdstq’seyqeries oTpoTaed- 134_€0l_MeN
PUTy eyl a: puTH'SeTqeTIEA OTPOTIed 3134 gL MeN

<= D1Q0IY¥3Ed usym
¢ (uotyeang Teuot3do-13d4_€dI_MeN
‘uotieIng Azojepueq‘13d_gdl_MmeN
~nH Xsel 13d_dOl_meN
‘234 ysel ewr] Auy_eyl-13d_@DL_meN
‘seTqeTie; eutl Auy-I13d €Ol MON) ejeeln-syse] ewt]l Auy

_ ! il =: enuTiuo) seTqeTies_swT]_Auy' 134 _gII_MeN
¢ berq ferdstq =: AKerdsrg serqeries_eurtl . —Auy- 13d_ g01_MeN
! puty eyl =: puTH' seTqeTIRA ewTl AUY'23d €0l MeN

<= FRIL AN, ueys

91 odii eyl esed
ou:muuoasu eyl =: oucmuuonEH 133_! moh moN
ouTy 3Ie35 Oyl =! SWTL 3ITBIS' 11d_4D1_Men
¢ surTpeeq oyl =: eutIpeaq’ 13d_40l_MeN

{ adfl eyl =: puTY)FeLl'13d_921_MoN
_ { poTaeg eyl =: PoT198d" 13d_g01_MeN
¢ (eodAr eyl) o&>9 xootrd HouucOUOmeh Mou = uuh mua LG
ueyy TINU = AL oyl) 3I9TT ysel ea1l ma
‘pe3jeslid ST OUO MBU ® IO 3IST] ©81] 8Yy3) WOl --
owod I8Y3iTe ued g)l Oyl _°e3eTiue3sur o3 burtiiy sxe nok jey3 ysei —-
otjyToeds oyy 10} YOOTH TOIU0Y ysel ' 38 03 ST earTIvelqo ISITI --

utbeq
{ 138 ¥ooTg ToIIUeD ATl i 134 °DL MeN

5T 2314 {ooTd TOXIu0y ysel uinisx
(1@bejur ut
! euTL‘ 1epuUaTE] UT
{ euwTl‘TepuaTe) ur sutTpELQ_OY],
¢ uoTyeang ut potied_eyl

: @ouearodwy_eyl
¢ zebejul ur : puty_eyl

suTy 31e15_9Y]l

! odAr puty Jsel Ul ad&L eyl
! ueeToOg UT Eet3 AetdsTa) 4ol 385 uoTioung
-aoe1d uT ST 3JBY3 QWeyos burrnpayos --
Juexino 8y3 uodn peseq ainpecoxd FINCIHOS Yyl AQ uT PaT[TJ ST sonTea --
oseyy 3o yoex ‘epow ay3 pue ‘suwI) 11eys_ayy ‘Aytiotad paubrsse ay3 sie -
N0 PeTTTF 30U swel] eyl ‘¥doTE _T0IIU0)_XSel 3no pelTTj ArTeriied e o3 —-
z93utod B suinjex pue InduT se YooTg [0A3u0D YSel e seyej eanpasoad STyl -

(ommxumm 1abeuey ysel) ojezedes

¢ @017 PpuTd pue
¢ gol punog uiniex
¢ (a1 Ag sysel) 3STT ySel esieaex]
utheq
(ysel o4 yoiees <= S59001d)_
ojezre3I‘oneny (I ySel Meu ST IST] ysel ©sisarl] sinpesoid
! ysel 103 ysieag pue
! 3T pue
! 8nil =: enuUTIUCD
osTe
{_@sTej =: enuTIUO)
_ ! g3l @yl =: €@DL punoj
uayl qI 3Sel eyl = 4l xsel 1e8baijul-gdl eyl 3IT
utrbeq
ST (uUeaJoog 3INO I 8NUTIUG) - _
¢ 134 ydoTd TOIUCY YSel uT : gol eyl) XSel 103 ydIees einpasolid

¢ 134 ¥°0TH TOIu0y Ysel : gI] punog

ST 234 Y00Tg [0I3U0) YSBL uiniex (1ebejul uv : I ¥Sel eyl) €517 puti uoridumj
s (u BoT)O ©31 YdIEdS STYI 8ONPeax PIROdD eInIdnIIs 18Yy30 sWOS -

10 @913 Axeutq e o3 burbueyy -uorjezedo (u)Q ue ST SIY3 OS eINISNIIS --
3ISTT-YUTT © UT peao3s axe sgol oyl ‘ATiuezany QI %sel s,ysel oYy --

uoATDb ysel ' 20j €)1 8Y3 PuTy 03 ST UOTIdUNF STY3I 3O asodind eyl --

(ebeyoed zebeuel ysel) eiezedss

C-32

N

901 399 pue

{ 134 @01 meN uinjex

yoeq eneny qI_Ag sysel ‘qI_Ag_sysel ‘I1d €0) MeN_) PPy eneny_dI jysel

N

*adfq ejeatad ® 8T gl ® esnedeq
WL Pue gy oy3j ueemjeq SUOTIBTOUNUWOD 203 Aiesseceu 8T STY) ‘€11
e 03 (I Xsel 1ebejuT ue yojew o3 pesn enenb eyl 03 YSeI MeU 8Y3 PPY

L}
(QI ¥%el'x3d g0l meN) xebejul ol al ySel =: (I Ysel 1ebejul‘x3d €OL MeN

{ esed pue

_ _ { 3T pue
8073710TXd_OTPOTIed_JO_lequmy _
/ s¥se] OYTporied 3o Jequmy) Iebejuj =:_ezTg UTE_DTPOTIed
usyl SOT3ITIOTId OTPoTIed JO Ioqumy < SYSel OTPoTied 3O Ieumy 3T

"peeYIsAC UO OT33T] ® eAaes o3 soTiTiorad ueyy sysey —-

a1ow oI¥ @Ieyl ueym pejernored ATuo 87 STyl ¢eq Ajyrzorad --
erqeyTeae yoee 103 spotied jo ebuexr eyl prnoys eys --
‘potied pouteljsoIun ue Y3jTa yowe pue seT3TIOTAd jOo Iequmu --
ay3 ueyl aebrey s1 A3ITTRUTPIED @SOYm S)ySB)} JO IS B pue -~
set3T207T1d 7O lequUnu ewWOS USATD jeyl sueem eyl °UTq --
£3120T2d Yore jo e2TY eyl eutTmieep 03 ST @18y [eod eyl --

¢ (Xoed enend eouejroduy
‘ond edueizodw] oTpOTIag _
‘134 g01 MaN) Pp¥-enend peispig eoueizodur
! (yoed enend poTied
‘potaed Ag sysel _ _
‘13d 901 MeN) ppy‘enenl pelepio poried

«syse3 orporTied jo yoeay --

ﬂoox IBYI S8INIONIYS elep oyl 03 PIPPR MOU ST Y] meu ayj -
¢ jebpng uoTIEZTTTIA OTPOTIed _

« (0°T- (N7 0°T) »» 0°2Z) » N =: uoTIE2T713n POaTnbey

! (sxsel oTpoTied 30 lequmy) 3ILOTI =: N

*3ebpng uoTaIeZTITTIN OTPoTIed oyl uodn peseq --

uoTIEZTTIN @ITIUe eyl jo ebejuedzed ® aq 03 peisnipe sT enTea --

eyl eyl ©30N ‘OTqTIseej eq 03 Sysel N 8y3 I0J pepesu ST IeY3 --

enTea Azoeyj STUOJUOCW-@3BI BY3} ST UOTIBZTTTIN peiTnbex eyl -

! { poTI84-234 GDL MeN_) 3eoTd /
(Keteq_demg ysel eoTm] +

(uoTaeang 7euoT3d0" 134 €DL MeN) 3°OTI +

(uotieanQ AI03EPUEH‘ 134 €L MON) I®OT4) _
+ UOTIEZTTTIN TeuoTIdo =: UOTIBZTTTIA TeuoTido
! (potaeg-xid g0l meN) 1eoTd /

-

(AeTeq dems ysel eoTAl +

uoTIeIng A203epuBN- 134 @01 MON_) 3Ieold)

+ UOTIEZTTTIA AI0lepueH =: UOTIERTTTTIN Kio3jepuel

‘peppe eq pTnod spotied bButbueyo uodn peseq SUOTIEZTTTIN I68YIQ -

]

-~

‘peyRTNOTED @I SUCTIBZTTTIN XBW pue UTW oY} SIeya &1 sTYL -

! 1 + sysel DTPOTI8g O I6qUUN =: Sysel o1potied Jo equmy

<= DIQOI¥34 ueym

£ 7 + sysel 4N JO WnN =: sYsel 4N JO umN

<= YYIOONIS | TWIL ANV ueyn
st adi} eyl esed

butTnpeyos yse3 Tol1jucd 03 pesn senfea @yl ojepdn 03 peou oM MON --

IT

! esed pue

(uor3eing Teuotido’ 233 @I meN
‘uotieang A103epuei- 2133 _G0L_MeN
‘seTqeTies IeTnburg-a3d G0l MeN) _ _ _ -
se(qeTae) ebueyp-134 ysel zeTndbuls oyl 134 9d1 AeN
{(@I Ysel-13d €0) MeN) jysel eumsey-burysely A
_! anyl =: enurjuo)‘serqeraes_ienburs‘ xad_@dl_meN
¢ pers Aerdstq =: Aeydsta-serqeraes e nbursiad_gol_men
¢ puty eyl =: puTH seTqeTae) 2eT1DUTS 134 901 MeN

-, - - <= YYINONIS ueys
(uoyjeang Teuotido'x3d_€OL_MeN
‘uotieand Axolepueq‘I13d_gol_MON
‘soTqeTIeA OTPOTIad X34 HOL M8N) _ _ -
seTqetiey ebueyd 134 YSeL OTPOTIOd OYL 134 €1 MeN
¢ (a1 xsey’13d §o1 meN) ysel ewnsey-buryserx A
_! dQdl =: enuTjuOD'seTqeries DIPOTISd 134 €Dl MeN
! berd AeTdsTq =: Ae1dsTQ'SO{qRTIEA_OTPOTIOd" I11d_GD1 MeN
! pury eyl =: PUTH' SaTqeTIes OTPOTIed X3d 601 MeN

_ _ <= DIQOIY3d ueym
(uor3eang Teuotidor13g_gol_meN
‘uotyeang A103EPUCH” 134 _GOL_MON
‘seTqeriep eurl Auy-i3g @Ol MeN) _ . _ _ _
seTqeTaep ebuey)-11d YSEL ewrl Auy Oyl I3d GOL MeN
{ (QI Ysel 34 €01 MeN) Ysel sunsey bulyselX A
¢ INYL =@ OnuUTIUOD FOTqeTIeA_BWTL Auy'I3d_8DI_meN
! perg Aerdstq =: AetdsTq-serqeraes_ewtl_Auy-23d_821_MeN
{ puUTY Oyl =: puTyseTqeTIes ewry Au¥-13d 811 MmN

<= IRIL ANY uaym

st odk1 ey esed

¢t suTTpeed 8yl =:

eouearodu]_ eyl =: @oueizodw-13d_gDI_MeN
euTl Xe3ls oyl =: ewT] 3Ie3S 134 €01 _MmeN
sutIpEeQ’ 114_g01_meN

f odh1 eyl =. Puid ASel 133_S0L_MeN

! potieg eyl =:

roTied’13d 854 MeN

¢ 3xeN13d 9] MeN =: (odAl eyl) 1ISTT ysel e81j
¢ (edAl eyl) 3ISTT ysBl @813 =: I3d €01 MeN

‘93e3s pepusdsns eyl ojur yoeq jTOsIT eveyd TTIM

JT@S3IT X5l 8yl eyl ©30N "spew T seTqeriea obueyd sysel eyl

0} TTed B uUeyl pue ‘poumsel ST ysel oyl IsITy ‘ejels pepuedsns

ey3 uT eq 03 peunsse eie nuumu butuuni-uou TTe eouUts ‘qol meu

ey3 jo suoTjexnp eyl eprTaoid 01 spesu jTesIT YSel ey3y ‘uoTITpPpe

ur -uyv pessed ajl ey 3T PAUTEIUOD @Ie eyl senfes meu 8yl O3

yse3 ey3 103 587qeTIea oyy oBURYD 03 poBuU Bm sueew Jey) 3T esn
os 3877 38l @813 eyl uo sT odAl sTYl 3O XSy pesn ATjueiind Y

! esed pua

pue

esTo

C-33

<= TYNOILJO_QILdWIAEd | AMOIVANVW_(ALJWITYd
| TYNOILE0 ONILINDAXE | AMOLVANVW ONILNDIXI usys

3T pue
! spuejioduy meN =: eouejzoduy: mus o:n
uey3 eouelzodwl meN =/ esueijxodwl-@dl Oyl 3t

{ 3T pue
{ euTTpEeq MeN =: euTTpeeq’ mua eyl
ueyy eurTpEeg MeN =/ SUTTpPEeq'ddl eyl 3T

31 pue
(Yoed “enany >mao¢
~25 Apeey ‘g0l Oyl) PPV enenyd peiepip eurl 3i1e3s
¢ ((end Apeey
‘901 oyl) 30 =04u4nom enenfy | uo»ovuo oEAH 3135

‘end Apeey v we3l o>oﬁou enanyd | vouomuo eWTL 3135

BWTL 3IBIS MON =: SWTL 31e3S‘GI1 Oyl
=ozu euWTL 3IBYS MON =/ SWTL 3IIe3S @Il eyl IT

<= AQV3Y ueym
TTaU
<= QILITIWOD | JIAYYOSIA ueym
8T styels gol eyl esed
3T pue
! (dar Wnch MUB oYl
‘seTqeTIe) eWT] AUY'GOJ OYl) SOTqRTIEA @I035’ sYFel ewTi Auy

! Ketdsta_meN =: Kerdsyq’ m@anaaum> oWty _Auy gol_oyl
uey3l AeTdsTg menN =/ Kejdstd-seTqeriep ewmtl Auy- €51 oYy FT

<= YVINONIS | THIL ANV ueya

3T pue
! 8873110714 OTPOIId :mauut
uey3 soTpoTied BTNpeyos oy 3t

! 31 pue
3T pue
¢ (yoed [enenyd) . Apeey
‘end Apeey ‘G0L OYL) PPV’ enenyd peiepio ewrl 31eis
! ((ond Apeey
‘AL eyl) 30 ! UOT3ITHO "¢ enenly | kuovuo euTy 33838
‘ony Apeey v we3]_eAowey eneny | Uoummuo owT] 31838
! ewr], 31835 MON =: eWr] 3iels’ oL oyl
uey3 ewyl 3XeIS MON =/ eWTL 3IeIS EDL oYl JT
ueyl AQY3AY = SNILIS EIL eyl 3IT

JT pue
! autTpeeq . MON =: euTTpPEaQ’ mua onk
usyl SUTTPEed MON =/ BUTTPEaq €ol oYl IT

! 31 pre
! an1l =: sotpotieg oasvonum oy
¢ (yoeg enenfy eouejzoduy
‘eny eoueziodu] oTpPOoTI®d ‘gl Oyl) PpY'eneny peiepip eouelzodur
! {(emd ou:muuomEH otpotied ‘gdl eyl)
3O uoT3TsO4 enenyd peiapiQ esuezzodul
‘ond) oucnuuanH oTpoTIed)
we3] eAowey-enony pexspiy eouezrodwl
*onenb oyl --
ur wotT3itsod syse3 oy3l abueyo Jou seop jTesyt Aq poried ey3r --
burbueyo ienp -19pIO IOVIIOO VYT IT UT JI9SUTEIT UGY3 pue —-
pue enenb eyi Woxj §J1 oY) eAomex O3 e1ey AIesseceu ST 3II -

{ eoueazodw] MeN =: eouejzodw]’' gl eyl

ueys eduezzodul meN =/ ecuejiodw]-gil eyl 3T

f_31 pue
! on1l =: SOTPOTILd oAsvosom E2 |
! (xuam o:wso y poTIegd
‘poTied Ag sysel ‘G0I_eYL) PpY’enend peiepio poriad
((poraed Ag sysel ‘@l eyl) JO uoT3TsOg
‘enenyy pe1spio potied ‘potieg Ag sysel)
we3] eAowsay‘enend pexepip poried
-enenb ey3 --
ut uor3Tsod syse3 eyl ebueyo jou seop jTesyT Aq poraed ey3l --
butbueys 3snpy *IGPIO IVVII0D BYJ IT UT JXGSUTEX UBY] pUe -
pue enenb eyy woxy gDl Oyl SAcwex ¢3 eixey Kiessaedeu ST 3 --

-~

! potied meN =: poTIed-gil o:a
!(potxed_i :oz) 3eotrd /
(AeTeq dems Ysel eoTAL +
(uotieing Teuo13do @Il oYl)_3IeOT3 +
(uoteang Azojepuer @il eyl) 3BOTI) +
(potzeg-€dl_oylL) 3Ieold /
(Aetoq demg ysel edTal +
(uorieang TeuoTido'€0L OYL)_3eO0Td +
(uoTaeanq Azojepuer @Il OYL) 3ITOTJ) -
=0aumuaﬁaub teuoTidp =: uOTIELZTTTIN TeuoTado
(po1xad meN) 3IeOTd /
(AeTeq_ am:m sl @OTAL +
(uoTieing AT03PPUER €01 eyl) 3ITOTd) +
(pOTI8g @0l Oyl) 3Irold /
(»maon dems ysel edTML +
{ uoryeIng A103epuel gl ©Yl) 3ILOTI) -
uoTIBZTTTIN AIOJEPUBH =: UOTILZTTTIN >u0uuv=a2
! en1l =: soTqeties @Tnpeyss ebueyd
ueyl poTied meN =/ poTied gil oyl JT

T pue
¢ (ar ysel-sor eyl _
‘SeTqeTieA OTPOTIed dOl Oyl) SeTqeTies e103§’ SYsel OTPoIIed
! Rerdstq_meN =: AeTdstq-serqeraEs_: __OTPOTI8d" €01_8YylL
ueyy KeTdstq MeN =/ KeTdsTq-serqeriep oT1poTied gl eyl 3T

f ISTVd =: SOTPOTI8g eTnpeyss ey
<= DIQOI¥A4 ueym

8T puT YSeL'€)l 9yl °sed
utbeq

! ISTYI =: ueeroog @ SOTPOTIOJ UON_OTnpeyds_ey
‘SOTPOTI9d eTnpeyds ey

‘SeTqeTIRA ! oT:.peyos_ebueyn

‘seyqetaes xsel ebueyd

ST (2ebajur : ou:muuanH _moN
eut]'Iepuere) : ewWTl 3IILIS_MON
ewT] " IEpUSTE) suTTPES]_MON

! ueeyoog m Ke1dstg_meN
! uotyeang : potiad_meN
{134 30TE [0I3UOY YSE] UT €01 eyl) A3jTpom eanpecoxd

‘uoTINDOXe ST 203 YSTI BYI -

Aq pesn serqeriea eyl pue)yse3 eyl jo HUTTNPOYDS I0J PesSn SOTqETIPA --
oyl y3oq o3 sebueyo ejertadoadde eyj Huryew Ueyl pue peTyTpow USE] --
gsey 3jeym Ino ButandTy 181T3 ST yse3 e HuTjTPow Y3ITA weyqgozd eyy -

-- K3TPOW NOILONDJ -~

(ebeyoeq xebeuey ysel) ejeredes

C-34

£ (PUTM A®RL €Dl OYL) 3ISTT ySel eexy =: INGN'ED]_OYlL
{ QqIITTAR0D =: snjels gil eyl
! f a1 Tysey- mUk oyl
.noanu«u-> 1e[nbUTS G0 YL) seTqeries e103s-sysel ienburs
{ STV =: OnuTIU0) BeTqeTIeA 1BTNBUTS EDL 8yl
UeU3 MYIRONIS = PUTH ¥S¥L'61 YL 3T

-oToAo uoTINDBXS -

I8yjouw 103 ewT3 eaey Aew jyee3 ewyy Aue uy °3I8TT yse3 8vd1} --
oyl ur yoeq peoerd eq ueo pue pejeiduwoo sy yse3 reTnburs ¥ -
¢ AUl = ysel u:Ouu:D moN vomm

¢ 3se],zebejul =: enyvas perdweeay

<= TTYNOILJO ONILNDEXA USYA

youg eneny_ewrl 31Iwis_iseje]
‘end eutl 11e3s 3s0je]
‘goL eyl)
PPY ' enenY peiepiy ewrl IIe3S 3I803e]
f (yoeg eneny_euyTpeeq
‘enld o:ﬂamaon
*gdl_oYyl) PPV enend peiepiQ euripeeq
¢ bututewey ewyl gl eyl _ - -
~-_OUTTPe®eQ €0l @Yl =: ewTl 31els Is03e1°gD]l eyl
31ebpng :Oﬂu-n«AﬂuD OTPOTI®g - 0°1) /
uor3eing Teuoy3ido gl Oyl) 3IeoTd) uorIeing
=: ButuTEWeY GWTL' gDl eyl

-
-~

! 37 pue
¢ 3se], 10beju] =: enye)s pejdweerd
¢ ANYL =i XSeLl JUeIIND MON PeeN
osTo
£ ((_end ewry 33e3IS_3se3e] ‘gl eyl)
30 UOTITEO4 enenyd pelepiq _euwr) 3Iels_3seje]
‘enQ ewyl 3135 3sedeq)_
Well @AOWeY‘eneny peiepiop ewurl 3Iels Isejeq
f((end euvTpEed ‘€Ol oYl)
3O UOTITSOJ' eneny pelepip_suirpeed
‘end) eutTpEeq_)
We3ll SACWON‘enenyd peiepip eurTpeeq
ueyl RYOLVANVW (3ldWId¥d = sn3e3g-giol eyl 3t

! (ar yseyr- gl eyl ‘A3vrorad | poidwesd) A3raotag 3es° o:axwahx A
{ TTYNOILJO QIldWIIYd =: SNILIS GOl Oyl

<= KYOLVANVW J3LAWITd | AYOLVANVW ONILNDAXI ueym
£ gol eyl =: (PuTH ¥SEL @0 Oyl) 3ISTT ysel ®exi
[vcax Xsel G0l Oyl) 3ISTT Asel 801y =i IXON'§DI_eyl
! QALATINOD =: 9NeIS 4DL 8yl
<= QIQYYDOSIQ uaym
ST snje3s gol eyl esed
urbeq
! ested =: ueeTood ! ysel juseiInd meN peeN

ST (23d ¥20Td T0I3U0) %sel uy : gl Oyl) peierdwo)y oTpoTiad uoN sinpesoid

einpecoxd STy3 TTed ued syse3 FWIL ANY 10 JIWINONIS ATuo eyl e3oN -

- pejerduoy otpotied UON FUNQEO0HEd b

(ebeyoeq zebeuey ysel) ejeredes

! K3JTPOR pue
! esEd puUe
! esed pus

¢ 11nu
<= SWIHLO ueym

! J7 pue
¢ eouejzodul™ AoN =: eduelzodwy® mu& eyl
ueyy eouejrodul MeN =/ edueizzodwy-gil Oyl 3T

! JT pue
3T pue
¢ (yoeg enend_ewrl 3IE3S_380%0]
‘onf) ewTl 3I1e]g ISOIRT_
‘421l OYL) PPV enend peiepio ewTl 3ie3s 1seje]
¢ (joeg enend_surTpeeq
renyy eurTpESq
‘gL @Yl) PPY'enend peiepig eutTpeeq
£((_end owTl 31e3S_38030T ‘GDOL eyl)
JO UOT3ITSOJ " enend peiepip_ewrl iiels_iseie]
.0:0 L uuaum 1sele])
we3] eAcwey enend) pelepiy GWTl ITLIS ISeIE]T
{((ond eurTpEAg ‘4dLl OYl_)
70 UOTIT8O4‘enenly pelepip_suTTpeeq
‘ond euripEeq)
W3l eAOWeY' Oneny peispip eutrpeeq
! putuTeWeY ewty" mua ayl = _ _
- euTTPead-gil oYl =: ewrl 3Ie3ls 3SeIeT dil eyl

_ _ este
! ((3¢ peareys @il eyl
xuo~u.~mﬂnowau) 3eol3) uorjeing
- buturewey ewtl‘g)l Oyl
=: BuTuTewey ewtl'@dl Oyl
ueyy qtzomhmb ONLINOIXI = Snjels-g9d] eyl
X0 XYOLVANVW “NILNOIXI = snle3s dol oyl 37

! suTTpES] MON =! @UTTpeeq dol eyl
UeYJ GUTTPES] MON =/ SUTTPESQ €3l oYl FT

*)SE] JUSLIINO OY3 Se XIel meu © -

eoerd ued ostpotied uoN peilerduwo) o sysel ysiedstp --
£1uo Ing ‘senenb ey ie3Te TTYM 31 -ATejerpeumy --
jysel JuelIn) eyi I08yye 30U TTTA ebueyd eyi --

3Inq pebueys oq ued eduejzodur pue SUTTPTepP YL --

C-35

{ pejeTdwo) oTpoTied uoN pue
! 37 pue
TIOU = Ysel juexind
esTe

¢ (ar yser- ysel juexan)y ‘A3iTioTad HurIndexy) »uhnoaum jes” vaaxuqax A
! YoOoTD'IepuUETE) =: Y POIIeIS Sl JUeIInd

! esed pue
¢ TTOU
<= SYIHLO ueym

¢ TYNOILJO ONILODAXI =: Sujels’ysel Juerind

<= TUNOILAO QLRI USYA
{ XYOIVANVW ORILOOEXE =: SUIEIG' YEBL JUSIIND

<= XYOLVANVW QaldWITdd ueys

ST snje3s-ysel juexan) esed
f((_end emr] 3xE35_3s03ET ‘ysWI_3USIIND)
FO UOT3ITSOJ enend) peieplo_ewf]_3ie3s_isejer]
‘eny ewt] aumum Igojer)
_we3l eaouey-enend pelepip ewTl 3Iels isejel
¢ (3uoxd enenyy) euTTpESaq
‘onY euTTpeeq) dod-eneny peiepip eurTpesq
¢ (eny euTTpeeq) JQ IUOII-Onend peiepip OUTTPReq =: YISl jueiin)
ueys (end surTpraq) A3dwy s1-snend peiepiQ @uTIpeSg IOU
pue ysel jueiin) meN peeN IT

! eses pue

{TTOU
<= SYZHLO ueys

¢ 37 pue

! 31 pue
{ gog eyl =: (PuTH YsEl'gd] eyl) 3ISTT ysel eeid
f A E:.x A¥el €Ol OYlL) ITT sl @814 =: IXON'dDl oYl
! @ILITAW0D = 8N3ILIS GO Oyl
f (a1 ¥ser-g@ol_eyy
.uoannaum> euTy Auy* g0l eyl) seTqeTIEA @X035°eYsel ewr] Auy
! gSTVYd =: enuTjuo) setqeTIes ewtl AUy g0l oyl
osTe
! (yoeq w:o:o oaaa uumum aseje
‘ony owty ﬁuum 1seje]
‘4oL oYl)

PPY‘eneny peiepi0o oIl 3Ie3s 38e3eT
! (yoeg enenyy_)_suTTpeeq
‘only eutTpeeq
‘DL ©Yl) PPV’ enent pelepio euT[pEeq
ueyy YD0ID°IPPUSTED < eWTl 3IIels 3883w g1l eyl 3I¥
! bututewey ewt]‘ g0l _OYlL
- euTIpFeq’gli @Yl =: 6WTL 31TelS 39931 ED1 eyl
jebpng UOTIEZTTIIN PTPoTIed - 0°1) /
uoTjeang TeuoT3do 801 Oyl) 3eord) uoTieang
«: bututewey owTl‘'gol Oyl
esTe
£ gorTeyl =: (PUTH ASEL D] O4l) 3ISTT Ysel 9813
! chx Yvel g0l eyl) 3ISTT ysel ea1l INeNEDL_eYyl
! QILITAN0D snjeas GOl eyl

—~—

! (a1 yseyr @ol_eyl
.awﬂnuuua> 1eTnBUTS @Ol @Yl) YeTqeTies e103s-eysel ieTnburs
{ 3TV =: BNUTIUCD seTqeTes reTnBUTS €IL €Yl
uey3l MVINONIS = PUTH Asel gdl eyl 3T

*@70&> UOTINOGXS --
Ieyaoue 103 owT] easey Aew ysej ouwTy Aue uy IST] YSEI 9013 -
9y3 uT yoeq pecerd eq ueo pue pejsTdwodo ST yse3 IeTnbUTS Y -

{((_ony ewry 3Ie3IS_38830T ‘Gl oyl)
30 uoTatsog- enenyd | vouovno ewTy, uumum 18638
‘only GEAH 33038 31se3eT)

we3l eaoulay‘enend peispio euT] 31035 31seje]

¢((end suyTpEeq ‘€OL_OYL)
3O UOTITSO4 enend pe1epip_eutTpeed
‘end” euTTPES]_)
W3l eAowey'enenyd poiepio ocnavmon

“3T eacwex o3 8T pol 3IsxTy --
8yl ‘sensnb ewrj 3Ie3S JFEIE] pue euTTpESp 8Y3 Y3oq UTr ST IT --
“TYNOILJ0 UQILdWI3Yd oY o1e3s sysel pejaTdwod eyl eours -

<= TYNOILdO QJILJWIIYd ueym

! 3T pue

! 3T pue

£ gol eyl =: (PUTY Y8Rl @D Oyl) 3ISTT Xsel 9el1j

¢ (chx ARl goL Oyl) 3ISTT YSel 8933 =i IXON'GDL_Oyl

! gIITIIN0D =: SNILIS @Il oYl

{ (a1 ysel’dol_eyl

.moanmau~> outy AUy gDl eyl) SeTqeTIeA eX035-sysel eur]_Auy

! ggTvd =: enuTuo) seTqeTIes euwrl Auy €Dl eyl
esT®

! (yoeg eneny ewr] _3iels_3seie]
‘and) euwTy 32835 389387
‘4ol eyl)_
PPY"@neny peiepip ewrl iiels 3Iseie]
! (yoeg enany)_eutipeaq
‘end) suTTpTOQ

‘851 @Yl) PPV’ enend peiepio eutlpesd

ueyl Y20ID" IEPUSTE) < OWTL 3IXEIS 1503e1°gd) eyl IT
! Pututewey ewWTL gDl oYl
- eUTIPFeq gL Oyl =: eWTL 11eis 3Isele] @il oyl
! ((Jebpng uoTIRZTTTIN - ipoTIdd - 01) /
(uotyeang Teuor3ido gdl eyl) 3e0Td) uoTieing

=: butuTewey OWTl €Ol eyl
*3ISTT yse3 ey eyl ut ysel eyy ind ueyy --
3,usT @18yl JI °senenb eyl uT)oeq Xsel eyl 3nd ueyy ST --
ezeyl 3I ‘ysel sury Auy oyl ybnoiaya dool 1eyjoue aINoexe 03 --
bututewez ewTy ybnous ST @I0Y] T YOBYD O3 SARY OM MON -

t(ar xmms 801 eyl
*RytroTag | po3dusexy) K3taoTad 308" m:axumkx A
! TUNCILJO QIIdWIJHd =: sn3els-dol eyl
- - - - - asTe
! @01 OYlL =: (PUTY YSel g0l eyl) 3ISTT ySe" eard

C-36

! sysel OTPoTIed UON 3UTId pus
£ euTT MaN-Of IxXel
¢ (a1 >m syse],) sysel OTPOTIGg UON 3IUTId

e

. . v eurT Ingd oI Ixel
$(L ewTl-3xElS L%
LENjels souelzodur Jy-peixess eurtpesq L%

LOUTL~ uunum bututewey Teuorido >»oumv:mz Q1 ysey ,) euUTT 3INd°'0I INeL
! (,Is03eT L%

b

suoTtleang e) ocaqlunm oI_3xel
L W53) sury and° oL 3xel
<= 8104 ‘jebpng uoTILZTITTIN OTPOTI®d) 3INd"OI L
(. <= 39Dbpng uoTIEZTITIA OIPOTI®d ,) ING'OI _Ixe
¢ 1 x0070° IepueTe)) Spuooes-iepueTed) INg*OI_BwTl
! (o <= ST MON OWTI OYL << ,)_Ing 0I_3xel
{ ouTT MeN'OI 3IXel

uth

9T Sysel OTPOTISd UON IUTIJ DINPAOOX

. et

f g <=ae]
'

-— sysel oTpotiaed UON UT1d FYATIOONd -

(sbeyoed” rebeuey ysel) ejeiedes

:

H ou:auuonsu Ag 8873710114 _OTPOTIeZ pue
¢ (enend eyy) eoue3zodmy . Aq esieaex]
utbeq

(poried duy Ag e13T10TId <= 8280014) e3eiel] enend peiepi(eoueizodul
meu sT eouejxodw] >n @szeaea] exnpedoad
! potaed dwl” Ag seT3rr0tad pue
! enIf =: ONUTIUO)
¢ K3taorag wo3jog =: K3T20T14°GOL oYl
{31 pue
3T pue
¢ (yoed eneny poried
‘enend) aﬁtk
‘gdl eyl) PpV‘enend pelepio poTied
{ wOTILZTTTIA TEUOTITPPY
+ UOT3EZTTTIN OTPOTI8d =! UOTIEZTITIN OTPOTIed
ueyy uoTIEZTTTIN pexTnbey =>
(UOTIBZTTTIN TBUOTITPPY + UOTILZTITTIM OTPOTIed) 3T

! (poTied-go] eyl_) 3IeoTd /
(Keteqd dess_jysel eotAl +
(uotjeang Ax03EpUER* gol eyl) 3074) =t uoTIeZTTTIA {eUOTITPPY
ueyl UOTIBZTTTIM pPexTnbey > UOTILZTTTA] OTPoTIed 31
{31 pue
! (a1 ysel @di_eyl
~moandaum> OTPOTI8d Gl OYl) Serqeriep 81035 " sysey STpolied
! Ki0o3epUel =: OPON' SOTqeTIBA : oTPOTI8d €31 8yl
uey3 A10ILPUBH =/ OPOK' S@TqeTIeA OTPOTI®d dil eyl 3T

utbeq
5T (URQJOOF 3INO : BNUTIUOD
! 2134 WOOTH TOI3UOY yEEL UT : gHIl Oyl) ~oTieg dul Ag S8T3ITIOTIJ 8Inpesold

f 0 =: zebejur : K3TI0TI4 JuerIND

sT (enbaq‘eneny | vOumvuo poTied Ino ur : enand dwel
! enbeq-enend peiepip oouelzodw] ur : o:o:o oyl)
eouejzodur” kg 8813710714 oTPOTI®d ousvoooua

-&3T11072d WO330q ey3 peubrsse sT jyse] --

eyl ueyi ‘jouued 37 31 -enb ey3j 03 peppe ST_YFel LY UeY3 --
‘guop eq ueo 3ied Alojepuem s,¥Se3 ® JI -poTIsg Aq dwel payred --
anb A3taoTad eTqTSTA >~H~=ouuxo ue sesn sinpedoiad sTY] -

- eoueyzodul” A9 SOTITIOTIJ OTPOTI8d IUNAIIONd -

{ oomeMQlucom:mzlxnuk) e3jezedes

C-37

(0 <= dx@a’p <=
(0 <= dx3a'p <=
(g <= dng‘y <=

(0 <= dx3‘y <=
(0 <= dx3‘p <=
(0 <= dx3‘p <=

100 <= dx3’y <=
(0 <= dx3‘p <=
(0 <= dxa‘p <=

.

-~
®

(0 <= dXI 'Y <=
(0 <= dxd’p <=
(0 <= dx3‘p <=

! SuTT MON'Q] 3IXel
Y] <= o103’ An.4~z=mvu=a 188])Ind 0l 3®old
! (w_ &) 3ING"QOL 3IXSL
IIYL <= @x0g ([‘1 .x<zvasm 3881)Ind Ol 3e0T4d
(.) Inarol Ixel
th 1 <= exog’(C‘t szvan 388L)3Ing 0l 3eord
R « ? Anvoomsn 1ebejur) 3Ind QI_3axel
! (4 o 7 (Y)obew], zebejul)_3ngd oI Ixel
dooT otpotied uoN XeR: °T ur £ Iog
doo] oTpoTied XeW: 'l ur I 103
(o WOS XYW NIN sYseLg,) ouyT_3nd-ol uxoa
---- sewWTL Ngd @bUeYD ~-----v-w=) BUTT_3ING'0I_3IXOL
! eutq MeN‘OI axe]
ueyl G = XequWnN 3188l IO p = IOqUNN 3188l 3T
! 3T pue
! donT pue
QOOA pue
! euTT meN' oH I¥e]
3FY°T <= 8103’ (f ‘T ‘KnS) swey 3sel)INd °OI 3e0Td
P } Ing'o] Ixel
Y] <= @x03°((T xczvnaom 1881) 304" 01 3e0Td
! (u_) 30d°0L INOL
uw< 1 <= ex03°(C ‘T’NIK) swey 188])3Ind 0l 1Ie0Td
(. .9 (C)ebewr, zeBejul) 3Ind'oI_3xel
(« « Y (T)obewr, xebejul)_3nd oI Ixel
dooT oTpoTaed uoN xey ‘1 uy [zo3
dooT oTpoTi®d XEW ‘1 UT I 203
||||||| SOWT] @AWY ---------- ,) BUTT_3Nd'QOI_ —_3xe]
! euTT MeN'0I 3¥el
ueyl ¢ = IOqUNN 388l 10 £ = zequmy 3] ¥

! euty meN® oH ey
IJY’T <= ex0g (L ‘T \xpmvmvoz 3861) 304 01 3e0Td
£ (w_ W) INA"O] 3IXSL
Y’ <= ex0g ‘(L ‘T Nxazvnvoz 38e1)Ind 0l 3eOTd
! (w_ W) AMI°0L 3INEYL
AJY’T <= @203 ({ ‘T ‘NIK) SPOW 3591)Ind OI 3®OTd
(o 3 (f)ebeml, zebajul) Ing-OI_IXdL
(« o % (T)0bEW], 20603UI)_3Nd°0I uxoh
doot oTpoTied UoN el T uy { x03
dooT oTpoTieg xmz..a ut I 103
XYW NIK d UoN§ I0d$,) OUTT_and OI_3xel
....... seuty AJTPOR ---------- ,) OUTT_INd-OI_3Xel
! 8aur1 meON°OI 3Ixel
ueys ¢ = IOqUMN 3ISeL 10 7 = nonaaz 3891 3T
!{ 3T pue
¢ dooT pue
aooH pue
! BuTT MeN® OH %8l
I3¢‘] <= o103’ An.a~znmv¢vv< 3s8L)INd‘OI 1eoTd
! (u_ .) 3INGT0L IX9Y
AFYT <= @x03°(C 7’ x«zvmvu¢ 1s81)Ind 0l 38014
(«) 3INd 0L XL
IIV’T <= @103’ .n.aszzvuvut 3881) Ind 01 3e0Td
{ (o « % (C)ebews, zebejuy) ang-0I_3a¥el
! (y o % (7)ebewy,zebe3ur)_3Ing 0l IX
dool otpotaeq uoN Xew:''T ut [Io03
doo7 oTpoTaed Xey "1 UT I 103

XYW NIRH d uoNg 194#,) OUTT_3INd OI_ ux@h
|||||||||| sowT] PPY ~------=-~ ,) SUTT INg'OI IXSL
ueys ¢ = TaqumyN 188L 10 1 = requnN 3Isel It

utbeq
ST (10bHO3UT UT : IoqumN 23S0l) SAWTL ISel 3UTIJ eanpevoad

- sewTl 3sel IUTId HENQAIONd --

(ebeyoeq zebeuey ysel) eijeiedes

H n*hﬂhluaM04u0mlu=4um pue
£ (7) OuTT MeN'OI_3xel

((uoTatpUO) uavoauOmvommEH edA1 uoT3TpUO) OTPOTI8d ¢ , ,) ING'OI_3IXOL

£ { , <= UOTITPUOD OTPOTISd JUSIIND,)_3INd OI_3IxXe]
! @uTT meN'0] 3Ixel
¢ (1ebpng uoTIEZTTTIIN OTPOTIBd) IRA OI 3eoTd
¢ (., <= jebpng UOTIEZTTTIN OTPOTIed,)_3INd OI_3Xel
! QUTT ABN'O] 3IXOL
{ (uoT3EZYTTIN peatnbey) Ing 0I 3eold
uoTIeZTITIN poxtnbey,)_3and o1_3xel
¢ euTT meN'Of 3IXeL
¢ (uoTjezTTTIN Teuor3do) 3Ind° Ol 3e0Td
uoT3ezTTTIn Teworado,)_3Ingd QI_Ixal
! eutrT :oz OH INSL
¢ (uoTaeZITTIN Az038pPUEH) INd Ol 3e0Td
! (, <= uOTIEZITTIN AzojEpuel,)_3Ind 0I_3xel
{ OUTT MeN' O] 3IXel
! (uoTIEZTTTIN OTPOTIEd) 3N QI 3IeoTd
! (, <= UOTILZTTTIN OTPOTIOZ,)_3INd 0I_3IX8]
! eUTT_MeN' O] 3xel
¢ (porxed Ag sysey) poried Ag sysel 3jutagd

LI - - .3
. -—= «) BUTT INg'OI XL

H opoW K3TI0T1g eouezzoduwl purty L%
. Hmcoaum Axzolepueyy poried QI ¥SBl ,) SUTT_Ind OI_3xe}
! (, suotrieang

-~
L3
A
L}

-~
-
.

3

«) OUTT ING"OI 3IXGL
utbeq
ST 8)sSel OTpPoTIe@d 3JuTigd exnpadoxd

- sYSel OTPOTIRd WUTI4 FUNTAD0Ed -~

(ebeyoeg 1ebeuey yse;) ejeredes

C-38

! sewrTl pIooey pue
! sut] pesdeTd + (81 dN WmN ‘S8l h wmN ‘HOS) >mnu< oyl
=t (8] aN unN ‘s] d woN ‘Wos) Aeaay eyl

/31 pue

! ewT] NOuQMHm - kmm aN Ezz ‘g1 g N XV) >MNu< eyl
ueyl (51 AN umN ‘Sl d umN ‘XYW) Aeaxy oyl < ewTt] vommMHm 3T
JT pue

! ewty peede(3 =: (_si dN wMN ‘si 4 wny ‘NIN) Aezay eyl
ueyl (81 dN WnN ‘sl 4 waN ‘NIN) Aexay eyl > ewtl pesderd 3T

{ (ewry 3re3s - ewTy do3ls) ILOTd =: ewr) pesder3

utbeq
¢ 3e0T3 : eur] posderd
sT (Aexay senTep 3se] jno ur : Keixy eyl
! 1ebejuT uT 8] d_umy
{ 1ebe3uUT UT : SI dN wnN
ewt]-1epuete) uT : ewTl do3s

SWTL 3Ie3S) Seurl pirodey eanpadoxd

'
! eut]'1epuete) uT

-- sewrl paooey HMNGII0E -

(ebeyoeq zebeuen ysey) ojeiredes

{0 <=
{0 <=
(0 <=

dxg’p <=
dx3‘py <=
dx3‘p <=

¢ sewv] 31sel 3uTid pue

, {31 pue

¢ syser oYporreq uoN uTig
ueyy g = zequUMN 350 FTSTO

¢ sysel oTpoTieg UTig
ueya (= uonaﬂz~uwwavww

¢ doot pue

¢_doot pue
! suTT MeN' oH Ixel

Y] <= B103’ .n~».z=mvuuaou 388]) Ind 0l 3Ie0Td

f (w_) 3INA0L 3XOL

AIY’] <= 8103 ([T 'XVW) 8dwo) 3581)Ingd’ 01 3IeoTd

! (w_ &) INZTQL 3IXOL

33¥¢‘7 <= @x03({ ‘T ‘NIW) 8dwo) 31881) Ing°0I 3®OTJ

[. ? Anvommﬂu 1ebejul)} 3INg-0l_3xel
(o o 3 (7)ebens, zebelur)_3ing-ol uxoa
dooT oTporieg uoN ¥ew: ‘1 utr [03
dooT otpoTied XeR: ‘[UT I 103
(« ROS XWH NIK SYself,) SUTT_3ng’OI_3Ixel
sewt] peieTdwo) Sl ~----—---- .) 8UTT_3Ing-OI_iIxel
! euTT meN'OI 3Xol
ueyy 9 = Tequmy 3I%6l jT
! 37 pue
¢ dootv pue
¢ dooT pue

C-39

’

¢ Teuor3do soTpoIled ewos pue
{ (enenyd eyl) TeuoT3d0 SOTPOTIed ©SISABRIL
utbeq
(®epOoH oTpoTied 1snlpy <= §ge00zg)
9381031 ‘OneNy PeIepi0 eouelzodu] meu
8T TeUOT3dO SOTPOTIEg @sieael] @anpeooid
! sepol otpoTiad asnlpy pue
! enal =: enuTIUO)
{37 pue
! 3T pue
f { a1 yser gol_eyl
.u@a&ﬂauﬂ> 5TPOTI8gd gdl @Yl) §8TqeTiep ©I1035°sysel oTpoIied
! TeuoTydo_=: OPOW’SOTqETIBA OTPOTIAg €Il Oyl
! UOTIBLZTTTIN TRUOTITPPY
+ WOTIEZTTTIN OTPOTI®G = UOTIBRZTIITIAN OTPOTIOg
usyj uoTIL2TTT3IN paarnbey =>
(UOTIEZTTTIN_TEUOTITPPY + UOTIEZTTTIN OTPOTI8d) 3T
f (poTI®g gyl oyl) 3Ieorq /
(Keteq dems _ysel eoTal +
(uor3eang TeuoTIdO €01 OYL) 1BOTd) =! UOTIBZTTTIN TEUOTITPPY
usyl UOTIBZTTTIA pexTnbey > UoTIEZTTTIN OTPOTiad 3T s
utbeq
ST (ueeJoog 3INO : 8NUTIUOCD
¢ 134 YoOoTd TOI3U0) ¥SeL UT : gil eyl) SepoW OTpoTiad Isn(py einpesoad

8T (enbeg-eneny peiepiy eoueizodwl UT : enend eyl)

Teuotado sotpoTied ewog einpesoid

*qaed Teuorzdo --

83T Oop 03 pelnpeyos aq o3 uoyjeinp TeuoTido I81I0YS € Y3ITM --

eouejzodut uo:ow e jo jse3 e 103 erqrssod ST IT JeYl OI0N ‘Peppe -—-

exe sired Teuorido s,yse] ey3 se peisnlppe ST UOTIEZT[TI] OTPOTI®g —--

oyl -Tres se gixed yeuoTido ITOY] @INDAXS UED IBYUL SYSEY ~-

@soy3 JO epow uoTINo8xe eyl 3Isnlpe o3 pesn sT exnpedoid sSTYL -

- Teuot3do soTpoTied emos FUNCIO0¥d -

(obeyoed 1ebeuey ysel) ojeaedes

C40

! eTnpeyss pue
! (sjoeq enend Apeey ‘end Apeey ‘g@ol eyl) PpY’eneny peiepip ewrl 3Iels

! ased pue
! (a1 Tyser” moh oyl
.maanaaum> 1eTnHUTS 2] oYl) serqeTiep ©103§'sysel TeTnburs
<= ¥YINONIS uaya

! (a Tysel 9ol ! 94l
~u0aﬂdaua> OTPOTIOd gDl OYl) SOTqeTIPA @1031§°sysel oIpoTied
{ $8T3T10T1d OTPOTIeg ubTSSY
<= DIQOIY3Id ueym
f{ar ana asd_ ,_94l
.m@anmauu> euT] Auy'g3l oYl) sefqeTiep @I03§'SYSel ewT] »:4

‘we3sks ey3 O3UT pemoyTe 30U eIe sysey OTpoTIed --

-uou BTqISEaj-UON ‘peOuUTmIeI8p ST ysel e jo A3ITTTqrses] oyl —-

1033e pelTed oq 03 peunsse ST STYL °§0IN3IONI3S anenb eyy 03 --
peppe 8T ysej oTporzed-uou e jeyy eoerd 315IT3 eyl ST STYI --

<= FWIL ANV ueynm

ST puty ysel-gol eyl esed
! AQVEY =: SNIEIS EDLl eyl

utbheq
ST (234 YooTd T0I3u0) ¥sel 1IN0 uT : g1 Oyl) eTnpayds einpedoid

- eTnpeyos FINAII0Nd -

Anoonxummluoumamzlxuak) ejezedes

¢ sTnpeydsTUn pue
{ wewd pue
! ssud pue

_ _ _ _ ! 1INU <= SUFHIO UdYm
{{(_onDTemILTII9ISTINNINT ‘@Dl OUL)
JOTUCTITS0 " SNONY PAISPIQ MWL IIVIS_ 18839

‘OnD WL IIVISTINNIE])
WO TOAOURY * SNOND POISPI0 WL IIVISTIBSIN]
£((enDTouTPReq ‘GIL UL) _
FOTUOTIYsOd sneND peIspIO_ UL [PV
‘enjeutipeeq)
WIIITOAOERY " SNONT PIOPIOTSUT TPV
¢ QEQYVOSIA *: sNIVIS EOLTOYL
4 (dIysel - goL eyl
‘K3720723POPaRDSTA) AITIOTILTINS BUTSVIX A

‘WeY) WOXJ PEACESI 8 O3 SpesU 3T 05 ‘senend -
SUTTPUEP 9Y3 Y3 PUR GW] 3IVIS 3ISSIN[Y3 Yjoq U} 8T --
31 08 pejdwesad uUSYI DUV PEIIVIS UGS @YY X8RI STYL -

<= TVNOIL0 GALIRAZUYd | AHOLVONVH CALINAZYd ueys
_{ qaqUVOSIQ =: sNIwISTEOLTeYL

¢ (QITYSeL gL TeUL

*K3TI0TIPOPINOB T |} AITIOTIZI8S BUTYSRLY A

*ASTT 03] 9yl U0 XOuq PedwTd o TIIM 3T ueyl --

‘93%UTmIa] 03 90R[d PJUS ¥ SOYSRAI ‘8°T ‘8030[dAROD 3T --
usyM -snle3ls 831 sbuvyo pue snyea aemol v o3 A3jtaotad --
831 398 03 POSU &M 08 BUTINOIXS ATIUBIIND BT Y8V Oyl -

<= TYNOIIJO ONIIAOZXZ | ANOLVANVA ONILNOGXE ueym
{ gOLTOUL = (PUTY ¥SVL GOL OUL) 8T YRl 88z
¢ (PURCYORLTEDLTOYL | ISTT YNNI 88IZ =i 3XeN"€DL_wuL
_ ! QAIATEROD =: $NILISTADLOYL
$(({ enD"Apwey ‘gol oyl)

JOTUOTITHOL * ONONY PeIBPIO AW LTINS
‘ond~Apwey)
W31 TPACWRY SNANY T POISPIO BWTLTIIVIS
<= XQVay usym
endb PWT] IWIV -~
ey ut Afuo s} puwv ewr3 3ae3s 83t peyoesx 8K jou sy -~
3T suwew VY3 ULyl ‘e3wls Apwey ey ut BT YB3 Y3 JI --

ST 8N3VS GILTOYL 8sWd
{1 - 8YBRI AN JOTUWNN =: 8X8VI dN FOUMN
s8] OTPoTIed-uoU BATIOV JO Jlaqunu ay3 3Isnlpy -

¢ e8ed pus
& 1InU
<= SYAHIO uaym
¢ { aITysel ddL euL
‘SOTQUTIVAININOUTS GOl OUL) SBTQPTIVA~ 803§ Y8Rl - IvInBUlS
{ FSTY4 =: SNUTIUOD BBTYRTIVA~ IV NOUTS GIL OUL
<= ¥VINONIS usym
¢ { QIoyselL ga_eul
'SITqUTIVATOUTL AUV GIL OYL) SPTAPTIVATSIONS S8Rl euT L AUy

¢ GOLTOUL =: (PUTNTYERL EILTOUL) ISTT XSRLeIZ
f(PUTTASRL EDLTOYL) uu«jnc.—. 001 =i JIXON'GIL_OUL
! QAITTIANOD =: eNJeIS EILTOUL

¢ eswd pus
! (poyzed goL eyl) word /
(Aereq densYSuLTeOTM] +
(uoyvANg [PUOTILO HOL YL } IwOTd +
(uoravang AZ03WpUK AdL oYL) IwoTd)
- UOTIVZITIINOTPOIISd =: UOTINZITTIN OIPOTING
<= TVNOILIO Ueym
! (poraed-gol eyl)} 3Iwold /
(Aeteg dumsTYsRleoIAL +
(uoyIvANg ATOIVPUVH EDLTOYL) IwOLd)
- UOTIVZITIINTOTPOTIN =: UOTINZITTIN PIPOTIed
<= ZYOLVONVA_usus
81 OPOH BOTARIIVAOTPOTING *€IL O4L 989D
¢ (poraed-@dL”eYlL) 3Iworad /
(AeTOq AUMSTYSOL OOTAL +
(9oTIRANG [WUOTINO EOL OUL) 3IWOLd +
(uoTILING A203IVPUVK EIL 4L) 3Iwold)
~ UOTIWZYLFIN IVUOTIAD =: TOTIWTYTFIN [PuOTIR
! (POTARI EIL YL) IwOTd /
(Aereg dems™y8RL ®OTML +
{ uor3Iwand AXO3IRPUVR-GILOYL) 3wold)
- UOTIWZTITTIN ATOIPPUPK =: UOTIVZFTTIN~AIOIWPUwR

‘3% pue
¢ ($9131I071d OIPOTISdT O IeqUMN

/ SASRITOTPOTI®I JO ASUNMN) I0B93uUl =: 8ZTSTUTH OTPOTIed
usyy 9F3ITIOTII OTPOTINY JO IBqUEON < SFVWL OTPOTISI JO IeqUNN 1T
*PUOYIBAO UO 9TIIT] ¥ 8AUE 03 $913TI0TIA URY) SYBY] -~
8I0W BIV BIGYI UMyM POIWTNOTRD ATuo s1 STyl ¢8q X3yrotad --
SIqUIIVAY [Oue 103 spotied jo sBuel syl PINOYS IUYM -~
‘poTIed POUTRIIESIUN UV YITM YOWS DUV S8TITIOTIE JO IequUNT --
oyl ueyl xeBae| St AJT[PUIPIVD eSOUM S)YSL] JO 08 ¥ PUV --
$91311013d JO IequUNU OWOS USATS VY] suwewm eyl ULq --
K311072d Yowd JO BZTI8 OYI SUIKINISP O3 BT sIeYy [voB eyl --

! 1 - 8YSRLTOTPOTIBI JOTIOQUNN =: SYFVITOTPOTISG O™ IBqUINN

! ((ond eouwizodmITOIPOTI®d ‘HILTOYL)

JOTUOTI T804 " BnInY PeIepIO eduRIzodm]
ond-eoue3Todur "o TPOTASd)
WO TACWRY * ONONY PIIBPIO eoURITOAM]T

¢ ({ end Apwey

‘G0L7OUL) JO UOTITEOQ ONend peIepI0 PWl] 3I93S
‘onY—Apwey)
We I TSAOEDY * SNAND T PRISPIO ST L TIIVIAS

¢ ((porred~Ag mysvl

‘EXLTOYL) JOTUOTITEOZ SNAND OIBPI0 PoTIed
‘PoTId_Ag)8Rl)
w931 ACESY * SNONY PIISPIO POTIG

<= DIQJOI¥Ed ueym

syse3 dSIporasd-uou Y3 Burinpeycsex (y
801pOTIdd Puturewaz 8yl SUTINPOYISdx (f
891313011d UBTEER O3 POSN sAN[RA 8yl Hurasnipe (I
sonend oy3y ﬂouu uw Bugaowsz (T {sPATOAUT
X8l oavo«s& © sTnpey FONVLYOINIDIQoIHad
oyy puw ‘;aQVHY ‘QOI¥Ad A€ SASVL onu ut S3I8TX® Yse] OTpoTIed ¥

C41

! g9Yd =: BNUTIUOD SBTQRTIVA— WL AUY AL 9YL ST puUtY Ysel gll eyl ssed
<= FHIL ANV_Usym - uySeq
8T puTY yeel EDIOUL eswo 8T (23d7XOOTETTOIIWODTASEL UT : @DLTEUL) [rPeYSSTuUR eInpesoxd

*3uTod UCTIVUIUISY © BBYOVSX -~
37 UOYM SPUd 3T VY] BANSUS TTIM SIYL BAUTIUOD 03 30U 8T --
97 SmouY ¥S®3 Y3 VY3 8INBUT 03 8T Op 03 BUIYI IBITF YL -

<z YYINONIS | NzHBl»zﬂuconz (efieyovg zefsuv XYsel) sIvIvdes

== oInpeydsTUN FUNGAIOUd -

(snje3s; oeIal)

=

(LANUMONE LdWnug puod: ni¢ no¢ nue nde snjels” aebeuew yeel) -> snie3ss
SNIYLS INI¥d eTnizep)

(
(ebesseu; joevI30I)
(eTqisesjuT: 3I0BIINI)
L=
(PT ¥se3; odA3 yFe3¢) -> oTgTsesjuts
(PT %se3¢ ysel erqisesjul) -> ebesseu;
{53 8[qTSEeJUT ue YITM PelIEdTOsse IDe] ey) sesousy,
MSYL JTEISYIINI FAOWIY oTnajep)

(
(3ueajge 3IoeI8I)
_ <=
(euTy: ¢ obessey JueAT) -> JUGATL
XS} 1eTNOUTS B SOJRPUTWILSY_§ IJUSAT,
6 LNIAZ 0L QNOdSIY eTniajep)

(
(3ueaz¢ 0BIIOA)
<=
(euT3¢ g obessay JueAg) -> IJUBATE
Y583 TeTnbutTs e sejeuUTWIA)_g 3JueAT,
8 LNIAT Ol QNOdSI¥ eTnijep)

(
(3uead¢ 30RILI)
<=
(ewT3¢ (obessel 3usAl) -> JueadTL
J{sey reTnbuTs e sejPUTWIEI | IUIAT,
LTINIAZ 0L ANO4SIY eTnizep)

— (
(Pt xse3: ysey saomer)
(ysele Ioevxialx)
{IuLAT ¢ uOMHUOMv
<=
(PT ASBI, YVIAONIS) -> MNSelé
(ewT3: 9 obesseN JUSAT) -> JUSATL
Y583 12Tnburs e sejeutmIen 9 3Jueal,
9 INZAF 0L ANOJSEY eTnijep)

- — (
(PT ysey¢ ysey 0>050Nv
(%8el: 0eI3e1)
(3ueade 3veI130l)
— <=
(Pt ¥selc DIAOI¥Ad) -> IASele

(out3e G ebessen juead) -> Jueade
1583 OTpoTied ® sejeurwie; g JUeAd,
S LNIAZ Ol ONOdSIY eTnijep)

(
(PT X®e3; yse) eAcwer)
{ysele deaer)
(3ueage Ide3ex)
=
(PT Y®®3: FWIL ANY) -> ysel;
(omT3: b obessey jueal) -> JueATE
X521 ewt3-fue ue sejeuTWIey_{ IUeAd,
v INIAZ OL UNOJSTE eTnijep)

(
(((eoue3yzodute

ouTy 3Ie3T
SUTTPEOPL
potaade
PUTYE
YINSNIS _
304l ASTI Ppe) = YWINONIS) 3Iesse)
(y eouejzodur putq)
(G pPuTY: PUTq)
(070 porzed¢ purq)
WTY¢ +v QCA%MOU«“ U:,ﬂnv
emTI +) SwTI IIVISE PUTQ)
(juea3; 3d0E1IOI)
<=
(ewty: ¢ obessel JueAd) -> JuULBAFL
X523 1eTnbuts ue sejeieued ¢ Jueaz,
€ INIAF 0l ANOdSIY eTnijep)

(
(({eoue3zoduye

oWry 33838
eurTpeEep
potaede
puTye
21001¥34d -

IML YseI ppe)= JIQOIY3Id) I1e5%%)

(y ecuelxodure purq)

(§ PUTY: putq)

(((wopue1) 10000000°0 =) Potaed: purq)

{((0"01 ®wTII¢ +) euITpeep; puTq)

({(0°G eWTI +) eWTI 3IxLIS PUT])

(usazc 3I0eI3el)

<=

(euti¢ 7 ebesse juead) -> ULATL

«1823 DTpoTied ue sejereusd_g jueay,
Z INIAZ Ol aNOdSE eTnijep)

(

({(g
euTy 1I1e38¢

sutTpeap:
0°0

_ PUTY¢
FAIL ARY _ _
andl Ysed ppe)= IWIL ANY) 3I1esse)
(S PUTYC PUTq)
((0°01 ®WTI +) suITpeep: PuIq}
((0°G Wt +) ewTy IILISE PUTq)
(JudAd: 30eIx31981)
<=
(ewt3, | obessel Jusaz) -> JuBATC
Y523 euTifue ue sejexeuad | ueay,
1 INIAT Ol GNOdSTY ernijep

seTny ssevoig bButuoseey ordwexz

C42

Bibliography

[AdaLRM, 1983]. Department of Defense. Reference Manual For The Ada Programming Language.
ANSI/MIL-STD-1815 A. Washington: Ada Joint Program Office, Office of the Under Secretary
of Defense Research and Engineering, January 1983.

[Aldem, 1990]). Aldem, Thomas D., and others. Phase I Final Report of the Pilot’s Associate Program,
Interim Report for Period November 1989-December 1990. Wright Research and Development
Center Technical Report WRDC-TR-90-7007. Marietta, GA: Lockheed Aeronautical Systems
Company, December 1990. (Limited Distribution — Distribution authorized to DoD and DoD
contractors only).

{Aldem, 1991). Aldern, Thomas D., and others. Phase 2 Interim Report of the Pilot’s Associate Program,
Interim Report for Period November 1989—-December 1990. Wright Laboratories Technical Report
WL-TR-91-7007. Marietta, GA: Lockheed Aecronautical Systems Company, October 1991,
(Limited Distribution - Distribution authorized to DoD and DoD contractors only).

fAllen, 1990). Allen, Amold O. Probability, Statistics, and Queueing Theory with Computer Science
Applications (Second Edition). San Diego, CA: Academic Press Inc., 1990.

[ARTIE, 1989]. Boeing Military Airplanes. Ada Real-Time Inferene Engine (ARTIE) User's Guide.
Version 1.1. Witchita, K : Avionics Technology, March 1989.

[Banks, 1991). Banks, Sheila M., Lizza, Carl S., and Whelan, Michael A. “Pilot's Associate: Evolution of a
Functional Prototype,” AGARD Conference Proceedings Machine Intelligence for Aerospace
Electronic Systems. pp. 16-1 thru 16-12. 7 Rue Ancelle 92200, Neuilly sur Seine, France:
Advisory Group for Aerospace Research & Development, May 1991.

[Baruah, 1991). Baruah, S., and others. “On-line Scheduling in the Presence of Overload,” Proceedings of
the 32nd Annual Symposium On Foundations of Computer Science. pp. 100~110. Los Alamitos
CA: IEEE, IEEE Computer Society Press, 1991.

[Bihari, 1989]. Bihari, Thomas E., Walliser, Thomas M.. and Patterson, Mark R. “Controlling the Adaptive
Suspension Vehicle,” IEEE Computer, 22,6 : 59-95 (June 1989).

[Booch, 1983]. Booch, Grady. Software Engineering with Ada. Menlo Park, CA: The Benjamin/Cummings
Publishing Company, Inc., 1983.

[Booch, 1986]. Booch, Grady. Software Components with Ada, Structures, Tools, and Subsystems. Menlo
Park, CA: The Benjamin/Cummings Publishing Company, Inc., 1986.

{Borger, 1989]. Borger, Mark W, Klein, Mark H., and Veltre, Robert A. Real-Time Software Engineering
in Ada: Observations and Guidlines. Technical Report CMU/SEI-89-TR-22. Camegie Mellon
University, Pittsburgh, PA: Software Engineering Institute, September 1989.

[Brassard, 1988). Brassard, Gilles and Bratley, Paul. Algorithmics Theory & Practice, Englewood Cliffs,
NJ: Prentice Hall, 1988.

[Broger, 1989]. Broger, Mark W. and Rajkumar, Ragunathan. Implementing Priority Inheritance
Algorithms in an Ada Runtime System. Technical Report CMU/SEI-89-TR-15. Camegie Mellon
University, Pittsburgh, PA: Software Engineering Institute, April 1989.

[ClassicAda, 1989]. Software Productivity Solutions.Classic-Ada User’s Manual. 1989.

[CLYPS-Ada, 1991). NASA. CLIPS/Ada Advanced Programming Guide. Version 4.4, Revision 1. Johnson
Space Center: Information Systems Directorate, Software Technology Branch, October 1991.

BIB-1

[CLIPSRefMan, 1991a). NASA. CLIPS Reference Manual, Volume I, Basic Programming Guide. CLIPS
Version 5.1. Johnson Space Center: Information Systems Directorate, Software Technology
Branch, September 1991.

[CLIPSRefMan, 1991b). NASA. CLIPS Reference Manual, Volume II, Advanced Programming Guide.
Version 5.1. Johnson Space Center: Information Sysicms Directorate, Software Technology
Branch, September 1991.

[CLIPSRefMan, 1991c]. NASA. CLIPS Reference Manual, Volume I, Utilities and Interfaces Guide.
Version 5.1. Johnson Space Center: Information Systems Directorate, Software Technology
Branch, September 1991.

[CLIPSUG, 1991]. NASA. CLIPS User's Guide Volume I - Rules. Version 5.1. Johnson Space Center:
Information Systems Directorate, Sottware Technology Branch, September 1991.

[Coffman, 1976). Coffman, Edward G. Computer and Job-Shop Scheduling Theory. New York, NY: John
Wiley & Sons, Inc, 1976.

[Cohen, 1986]. Cohen, Norman H. Ada as a Second Language. New York, NY: McGraw-Hill Book
Company, 1986.

[Cormen, 1990]. Cormen, Thomas H., Leiserson, Charles E., and Rivest, Ronald L. Introduction to
Algorithms. Cambridge, MA: The MIT Press, 1990.

[Dechter, 1991]. Dechter, Rina, Miri, Itay, and Pearl, Judea “Temporal constraint networks,” Artificial
Intelligence, 49, 1-3 : 61-95 (May 1991).

[Dodhiawala, 1988]. Dodhiawala, Rajendra and Sridharan, N.S. Real-Time Impact Report (RT-1 Impact
Analysis). MCAIR SDRL 10-1. Santa Clara, CA: FMC Corporation, Central Engineering
Laboratories, September 1988,

[Dodhiawala, 1989]. Dodhiawala, Rajendra, Sridharan, N.S., Raulefs, Peter, and Pickering, Cynthia “Real-
Time Al Systems: A Definition and An Architecture,” Eleventh International Joint Conference on
Artificial Intelligence. pp. 256 -261. San Muteo, CA: The International Joint Conferences on
Artificial Intelligence, Inc., Morgan Kaufmann Publishers, Inc., August 1989.

[Fanning, 1990]. Fanning, Franklin Jesse. An Evaluation of an Ada Implemeniation of the Rete Algorithm
for Embedded Flight Processors. MS thesis, AFIT/GE/ENG/90D-70. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH, December 1990.

[Klahr, 1986]. Kalhr, Phillp and Waterman, Donald A. Expert Systems Techniques, Tools, and
Applications. Reading, MA: Addison-Wesley Publishing Company, 1986.

{Klein, 1990]. Klein, Mark H. and Ralya, Thomas. An Analysis of Input/Output Paradigms for Real-Time
Systems. Technical Report CMU/SEI-90-TR-19. Camegie Mellon University, Pittsburgh, PA:
Software Engineering Institute, July 1990.

[Lambert, 1990]. Lambert, R.E., and others. Phase I Final Report of the Pilot’s Associate Program, Final
Report for Period Febuary 1986-December 1990. Wright Laboratories Technical Report WL-TR-
91-7006. St. Louis, MO: McDonnell Aircraft Company, December 1959, (Limited Distribution -
Distribution authorized to DoD and DoD contractors only).

[Lambert, 1991]. Lambert, R.E., and others. Technical Operating Report - System Design Document, Final
Report for Period August 1988—-December 1990. Wright Laboratory Technical Report WL-TR-91-
7005. St. Louis, MO: McDonnell Aircraft Company, September 1991. (Limited Distribution -
Distribution authorized to DoD and DoD contractors only).

{Lamont, 1991]. Lamont, Gary B. Real-Time Scheduling of Periodic and Aperiodic Tasks. February 1991,

CSCE686 Class Notes, School of Engineering, Air Force Institute of Technology (AU). Wright-
Patterson AFB OH, February 1991.

BIB-2

[Liu, 1973]. Liu, C. L. and Layland, James W. “Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment,” Journal of the Association for Computing Machinery, 20, 1 : 46-61
(January 1973).

[Liu, 1991]. Liu, Jane W.S., and others. “Algorithms for Scheduling Imprecise Computations,” IEEE
Computer,24, 5 : 58-68 (May 1991).

[Lizza, 1989]. Liz7a, Carl S. “Pilot's Associate: A Perspective Demonstration 2 ,” Proceeding of
Computers in Aerospace Conference. . AIAA, 1989.

[Locke, 1992]. Locke, C. Douglass and Vogel, David R. Ada Real-Time Programming: A Seminar. March
1992, IBM T . eral Sector Division, Owego, NY 13827.

[Nii, 1989]. Nii, H. Penny. The Handbook of Artificial Intelligence, Volume IV. Reading, MA: Addison-
Wesley Publishing Company, 1989.

[O’Reilly, 1988]. O’Reilly, Cindy A. and Cromarty, Andrew S. *“‘Fast’ is not ‘Real-Time": Designing
Efttective Real-Time Al Systems,” Applications of Artificial Intelligence Il. pp. 249-257. SPIE,
SPIE, 1988.

[Payton, 1991]. Payton, David W. and Bihari, Thomas E. “Intelligent Real-Time Control of Robotic
Vehicles,” Communications of the ACM, 34, 8 : 48-63 (August 1991).

[Real-Time, 1984]. U.S. Army Communications-Electronics Command. Real-Time Ada Workbook. Fort
Monmouth, NJ: Center For Tactical Computer Systems, July 1984.

[Sawyer, 1990]. Sawyer, George Allen. Extraction and Measurement of Multi-Level Parallelism in
Production Systems. MS thesis, AFIT/GCE/ENG/90D-04. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH. December 1990.

[Scoy, 1989]. Scoy, Roger Van, Bamberger, Judy, and Firth, Robert. An Overview of DARK, Ada-Letters
(November/Dece nber 1989).

[Sha, 1989]. Sha, Lui and Goodenough, John B. Real-Time Scheduling Theory and Ada. Technical Report
CMr}lJlsglg.;Ig-89-TR-l4. Camegie Mcllon University, Pittsburgh, PA: Software Engineering Institute,
April 1989.

[Sha, 1991]. Sha, Lui, Klein, Mark H., and Goodenough, John B. Rate Monotonic Analysis for Real-Time
Systcms. Technical Report CMU/SEI-91-TR-6. Camegie Mellon University, Pittsburgh, PA:
Software Engineering Institute, March 1991.

[Shamsudin, 1991]. Shamsudin, Annie Z. and Dillion, T.S. NetManager: A Real--Time Expert System for
Network Traffic Management. Technical Report 15/91. Department of Computer Science and
Computer Engineering, La Trobe University, Bundoora, Victoria, Australia 3083: La Trobe
University, December 1991,

[Simpson, 1988]. Simpson, Robert L. “DoD Applications of Artificial Intelligence: Successes and
Prospects,” Applications of Ariificial Intelligence VI. . SPIE, SPIE, 1988.

[Smith, 1990]. Smith, David M. and Broadwell, Martin M. Pilot’s Associate System Knowledge Base
Document, Volume 1: Tactics Planner Subsystem, CDRL Sequence No. 32, . Contract F33615-85-
C-3804. Marietta, GA: Lockheed Aeronautical Systems Company, October 1990. (Distribution
Limited M and DoD contractors only).

[Sprunt, 1989]. Sprunt, Brinkley, Sha, Lui, and Lehoczky, John. Scheduling Sporadic and Aperiodic
Events in a Hard Real-Time System. Technical Report CMU/SEI-89-TR-11. Camegie Mellon
University, Pittsburgh, PA: Software Engineering Institute, April 1989.

[Sprunt, 1990]. Sprunt, Brinkley and Sha, Lui. Implementing Sporadic Servers in Ada. Technical Report

SIMUI/E,%—%—TR@ Carnegie Mellon University, Pittsburgh, PA: Software Fngincering Institute,
ay .

BIB-3

[Stankovic, 1988]. Stankovic, John A. and Ramamritham, Krithi, Tutorial Hard Real-Time Systems, IEEE
Catolog Number EH0276-6, Computer Society Press Order Number 81, February 1988.

[Stockman, 1988]. Stockman, Steven P. “ABLE: An Ada--Based Blackboard System,” Proceedings of
AIDA-88, Fourth International Conference on Artificial Intelligence and Ada. George Mason
University, George Mason University, 1988.

[Tindell, 1992]. Tindell, Ken, Burns, Alan, and Wellings, Andy, Allocating Hard Real Time Tasks (An
NP-Hard Problem Made Easy), e-mail via ftp, 1992, Real Time Systems Research Group,
Department of Computer Science, University of York, England.

[VERDIX, 1990]. VERDIX Corporation. VADS Veridx Ada Development System Version 6.0. Sun-4 Sun
0OS. August 1990.

[Whelan, 1990]. Whelan, Michael A. and Rouse, Doug Pilot's Associate: Approaching Maturity. In
Seventh Annual Workshop on Command and Control Decision Aiding. Air Force Institute of
Technology, Valusek, J. R. and Duffy, LorRaine, Ch. 3, Air Force Institute of Technology/ENS
Wrighlt—gl;%(x)ucrson AFB, Ohio 45433-6583, Distribution Limited to DoD and DoD contractors only,
April .

[Wilber, 1989]. Wilber, George F. “Intelligent Real-Tim. *mbedded Systems,” Proceedings of AIDA-89,
Fifth International Conference on Artificial Inteiligence and Ada. pp. 74-82. Washington D.C.:
Department of Computer Science, George Mason University and The Institute for Defense
Analyses, George Mason University, November 1989.

[Wilensky, 1983). Wilensky, Robert Planning and Understanding A Computational Approach to Human
Reasoning. Reading, MA: Addison-Wesley Publishing Company, 1983.

[Wood, 1989]. Wood, William G. Temporal Logic Case Study. Technical Report CMU/SEI-89-TR-24.
Camegie Mellon University, Pittsburgh, PA: Software Engineering Institute, August 1989.

BIB4

Vita

Captain Michael A. Whelan was born to Dr. William J. Whelan and Barbara A. Whelan on July 25,
1958. He enlisted in the United States Air Force on February 22, 1977 as an Aircraft Armament Systems
Specialist. Captain Whelan served enlisted tours at Lowry AFB, Colorado; Cannon AFB, New Mexico;
RAF Upper Heyford, United Kingdom; and Moody AFB, Georgia. His enlisted positions included
Weapons Load Crew Chief, Shift Supervisor, and Weapons Controller in Maintenance Control. Captain
Whelan obtained the enlisted rank of Technical Sergeant before entering into the Airman Education and
Commissioning program in May of 1985. After graduating with honors from New Mexico State
University, Captain Whelan attended Officer Training School and was commissioned as a Second
Lieutenant on April 13, 1988. His first officer assignment was to the Cockpit Integration Directorate,
Wright Laboratories, Wright-Patterson AFB, Ohio, where he served as the project engineer for the Pilot's
Associate program from June 1988 until June 1990. Captain Whelan was then assigned as the Chief
Engineer for Multi-Role Cockpit program. In May 1991, Captain Whelan was accepted into the graduate
computer engineering program at the Air Force Institute of Technology. Captain Whelan is slated to fill a
Command Directed Educational Requirement (CDERS) slot at Wright-Patterson AFB after graduating.

Permanent Address: 6370 Copper Pheasant Drive
Dayton, Ohio 45424-4100
(513) 237-9502

VITA-1

] o e ; ™ Apneoved
; REPORYT DOCUMENTATION PAGE : s
T RGENCY LSE ONLY (iocor nat §2 RLPDART oAl T3 REPGRT TYPL ANDJ DATES CO\AI;RED
i December 1992 | Master's Thesis
STV R S) TTEUNDING NUMBIRS
AN INTELLIGENT REAL-TIME SYSTEM
ARCHITECTURE IMPLEMENTED IN ADA ‘
G AL THDR 5
Michael A. Whelan, Capt, USAF ;
i
R R R A T AN T TR s TR PERFORMING CRGANIZATION
: ALPGRT NUMBER
Air Force Institute of Technology, WPAFB OH 45433-6583 { AFIT/GCE/ENG/92D-12

AGENCY BYPORT N MSER

" com o S A Ayt W oty O T T A T NN
D OAPONAT T ASORT T R AGTRLY MARSEIL L SR A0 TR POOSEINSTTNG MITITORING

Major Carl Lizza
WL/FIPA
WPAFB, OH 45433-6553

SUTRGT T T o T T T Tob. DASTRIRL e D

Approved for public release; distribution unlimited

Conventional real-time systems are fully deterministic allowing for off-line, optimal, task
scheduling under all circumstances. Real-time intelligent systems add non-deterministic task
execution times and non-deterministic task sets for scheduling purposes. Non-deterministic task
sets force intelligent real-time systems to trade-off execution time with solution quality during
run-time and perform dynamic task scheduling. Four basic design considerations addressing those
tradeoffs have been identified: control reasoning, focus of attention, parallelism, and algorithm
efficacy. Non-real-time intelligent systems contain an environment sensor, a model of the
environment, a reasoning process, and a large collection of procedural processes. Real-time
intelligent systems add to these a model of the real-time system’s behavior, and a real-time task
scheduler. In addition, the reasoning process is augmented with a metaplanner to reason about
timing issues using the system’s behavioral model. Additionally, real-time deadlines force the
inclusion of pluralistic solution methods in the intelligent system to allow multiple responses
ranging from reactive to fully reasoned and calculated. This research presents an architecture
capable of meeting real-time performance goals with on-line scheduling of tasks.

Artificial Intelligence, Real-Time, Ada, On-line Scheduling, __“_LSQ_“
Knowledge-based Systems, Expert Systems

!
o é o |
— UNCLASSIFIED UNCLASSIFIED | ___UNCIASSIFIED | uL

